

Operating manual

Translation of the German original version

IDNR 20752249 / 5260 / 01/2023 en

Legal notice

Notes on the quick reference guide

The operating manual and the quick reference guide of the installation tester BENNING IT 130 can be found on the product website of the BENNING IT 130 for free download in PDF format. http://tms.benning.de/it130

The devices are subject to continuous further development. Benning reserves the right to make changes to the device's design, configuration and technology. The information in this operating manual corresponds to the state of technical knowledge at the time of printing. For this reason, no claims for certain device characteristics can be derived from the contents of this operating manual.

Manufacturer / holder of rights

BENNING Elektrotechnik und Elektronik GmbH & Co. KG

Münsterstraße 135 – 137

46397 Bocholt

Germany

Phone: +49 2871 / 93-0

General non-discrimination

Benning is aware of the importance of language with regard to the gender equality and endeavors to take this into account at all times. To improve readability, we have refrained from consistently using differentiating formulations.

Copyright

© Copyright 2020, BENNING Elektrotechnik und Elektronik GmbH & Co. KG

All rights reserved.

This document – particularly all of the contents, texts, photographs and graphics that it contains – are protected by copyright.

No part of this documentation or the associated contents may be reproduced or edited, copied or distributed using electronic media in any form (printed, photocopied or using any other method) without express written permission.

Information in this operating manual can be changed at any time without prior notice. Benning is not obligated to make amendments to this operating manual or to keep it up to date. The devices are subject to continuous further development. Benning reserves the right to make changes to the device's design, configuration and technology.

IDNR: 20 752 249

TN: 10110213.07

Table of contents

1	Preface	6
2	Safety and operating instructions	7
	 2.1 Warnings 2.2 Batteries / storage batteries and charger 2.3 Standards applied 	7 .11
3	Device description	.14
	 3.1 Front panel	. 15 . 16 . 17 . 18 . 19 . 19 . 20
4	Operating the BENNING IT 130 installation tester	. 22
	 4.1 Indications and acoustic warning signals	.22 .22 .23 .23 .24 .24 .25 .26 .26 .26 .27 .27 .28 .29 .30 .30
5	Measurements	
	 5.1 TRMS voltage, frequency and phase sequence	.35 .37 .37 .38 .39 .41 .42
	5.4.3 Tripping current (RCD I) 5.4.4 Automatic test	. 44

	5.6.2 5.7 5.8 5.9 5.10 5.11	Loop impedance and prospective short-circuit current	. 49 . 50 . 51 . 53 . 55 . 57 . 58 . 60
6	Man	agement of measured values	.62
	6.1	Memory structure	.62
	6.2	Saving measuring results	
	6.3	Recalling measuring results	
	6.4	Deleting measuring results	
	6.4.		. 66
		2 Deleting all measurements of each storage location and subordinate storage	66
		tions 3 Deleting an individual measurement	
	6.5	Renaming installation structure fields	
		Renaming installation structure fields by means of the logging software BENNIN	
		Vin IT 130-200	
	6.5.2	Renaming the installation structure fields by means of the barcode scanner	. 68
	6.6	USB and RS232 interface	.69
7	Log	ging software BENNING PC-Win IT 130-200	.70
_	-	ware update	
8		-	
	N/ - ! -		
9	war	itenance	
9	9.1	Fuse F1 replacement	.71
9	9.1 9.2	Fuse F1 replacement	.71 .71
9	9.1 9.2 9.3	Fuse F1 replacement Cleaning Calibration	.71 .71 .72
9	9.1 9.2 9.3 9.4	Fuse F1 replacement Cleaning Calibration Service & support	.71 .71 .72 .72
9	9.1 9.2 9.3	Fuse F1 replacement Cleaning Calibration	.71 .71 .72 .72
9	9.1 9.2 9.3 9.4 9.5	Fuse F1 replacement Cleaning Calibration Service & support	.71 .71 .72 .72 .72
	9.1 9.2 9.3 9.4 9.5	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection	.71 .71 .72 .72 .72 .72
	9.1 9.2 9.3 9.4 9.5) Tech 10.1	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection	.71 .71 .72 .72 .72 .72
	9.1 9.2 9.3 9.4 9.5) Tech 10.1	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection Inical data Insulating resistance Low-impedance resistance / continuity test	.71 .71 .72 .72 .72 .72 .73 .73
	9.1 9.2 9.3 9.4 9.5) Tech 10.1 10.2 <i>10.2</i> <i>10.2</i>	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection nnical data Insulating resistance Low-impedance resistance R LOW .1 Low-impedance resistance R LOW .2 Continuity test	.71 .72 .72 .72 .72 .73 .73 .74 .74 .74
	9.1 9.2 9.3 9.4 9.5) Teck 10.1 10.2 <i>10.2</i> <i>10.2</i> 10.3	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection mical data Insulating resistance Low-impedance resistance / continuity test .1 Low-impedance resistance R LOW .2 Continuity test Residual current protection devices (RCDs)	.71 .72 .72 .72 .72 .73 .73 .74 .74 .74 .74
	9.1 9.2 9.3 9.4 9.5 D Tech 10.1 10.2 <i>10.2</i> 10.3 <i>10.3</i>	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection mical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW 2 Continuity test Residual current protection devices (RCDs) .1 General data	.71 .72 .72 .72 .72 .73 .73 .74 .74 .74 .74 .74
	9.1 9.2 9.3 9.4 9.5) Tech 10.1 10.2 <i>10.2</i> 10.2 10.3 <i>10.3</i> <i>10.3</i>	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection nnical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW 2 Continuity test Residual current protection devices (RCDs) .1 General data .2 Contact voltage (Uc)	.71 .71 .72 .72 .72 .73 .74 .74 .74 .74 .74 .74
	9.1 9.2 9.3 9.4 9.5) Teck 10.1 10.2 <i>10.2</i> <i>10.2</i> <i>10.3</i> <i>10.3</i> <i>10.3</i> <i>10.3</i> <i>10.3</i>	Fuse F1 replacement Cleaning. Calibration. Service & support. Disposal and environmental protection. nnical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW. 2 Continuity test Residual current protection devices (RCDs) 1 General data 2 Contact voltage (Uc) 3 Tripping time (RCD t)	.71 .72 .72 .72 .73 .73 .74 .74 .74 .74 .74 .74 .75 .75
	9.1 9.2 9.3 9.4 9.5) Teck 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection mical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW 2 Continuity test Residual current protection devices (RCDs) 1 General data 2 Contact voltage (Uc) 3 Tripping time (RCD t) .4 Tripping current (RCD I)	.71 .72 .72 .72 .72 .73 .73 .74 .74 .74 .74 .74 .75 .75 .76
	9.1 9.2 9.3 9.4 9.5) Teck 10.1 10.2 <i>10.2</i> <i>10.2</i> <i>10.3</i> <i>10.3</i> <i>10.3</i> <i>10.3</i> <i>10.3</i>	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection mical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW 2 Continuity test Residual current protection devices (RCDs) 1 General data 2 Contact voltage (Uc) 3 Tripping time (RCD t) 4 Tripping current (RCD I) Loop impedance and prospective short-circuit current	.71 .72 .72 .72 .72 .73 .73 .74 .74 .74 .74 .75 .75 .76 .77
	9.1 9.2 9.3 9.4 9.5 D Tech 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.4	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection mical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW 2 Continuity test Residual current protection devices (RCDs) 1 General data 2 Contact voltage (Uc) 3 Tripping time (RCD t) 4 Tripping current (RCD I) Loop impedance and prospective short-circuit current 1 Zs function (for systems without RCD) 2 Zsrcd function (for systems with RCD)	.71 .72 .72 .72 .73 .73 .74 .74 .74 .74 .74 .74 .75 .75 .75 .77 .77
	9.1 9.2 9.3 9.4 9.5) Tech 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.4 10.4	Fuse F1 replacement. Cleaning. Calibration Service & support. Disposal and environmental protection mical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW. 2 Continuity test Residual current protection devices (RCDs) 1 General data 2 Contact voltage (Uc) 3 Tripping time (RCD t) 4 Tripping current (RCD I) Loop impedance and prospective short-circuit current 1 Zs function (for systems without RCD)	.71 .72 .72 .72 .73 .73 .74 .74 .74 .74 .74 .74 .75 .75 .75 .77 .77
	9.1 9.2 9.3 9.4 9.5 D Tech 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.4 10.4 10.4 10.4 10.5 10.6	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection mical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW 2 Continuity test Residual current protection devices (RCDs) 1 General data 2 Contact voltage (Uc) 3 Tripping time (RCD t) 4 Tripping current (RCD I) Loop impedance and prospective short-circuit current 1 Zs function (for systems without RCD) 2 Zsrcd function (for systems with RCD) Line impedance and prospective short-circuit current / voltage drop Earthing resistance	.71 .72 .72 .72 .73 .73 .74 .74 .74 .74 .74 .75 .75 .75 .75 .77 .77 .77 .78 .78
	9.1 9.2 9.3 9.4 9.5) Tech 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.4 10.4 10.4 10.4 10.4 10.5 10.6 10.7	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection mical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW. 2 Continuity test Residual current protection devices (RCDs) 1 General data 2 Contact voltage (Uc) 3 Tripping time (RCD t) 4 Tripping current (RCD I) Loop impedance and prospective short-circuit current 1 Zs function (for systems without RCD) 2 Zsrcd function (for systems with RCD) Line impedance and prospective short-circuit current / voltage drop Earthing resistance TRMS voltage, frequency and phase sequence	.71 .72 .72 .72 .73 .73 .74 .74 .74 .74 .74 .74 .75 .76 .77 .77 .77 .78 .78 .79
	9.1 9.2 9.3 9.4 9.5) Tech 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.4 10.4 10.4 10.4 10.5 10.6 10.7 10.7	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection nnical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW 2 Continuity test Residual current protection devices (RCDs) 1 General data 2 Contact voltage (Uc) 3 Tripping time (RCD t) 4 Tripping current (RCD I) Loop impedance and prospective short-circuit current 1 Zs function (for systems without RCD) 2 Zsrcd function (for systems with RCD) Line impedance and prospective short-circuit current / voltage drop Earthing resistance TRMS voltage, frequency and phase sequence 1 TRMS voltage (AC/DC)	.71 .72 .72 .72 .73 .73 .74 .74 .74 .74 .74 .74 .74 .75 .75 .76 .77 .77 .77 .78 .79 .79
	9.1 9.2 9.3 9.4 9.5) Teck 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.4 10.4 10.4 10.5 10.6 10.7 10.7 10.7	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection mical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW 2 Continuity test Residual current protection devices (RCDs) 1 General data 2 Contact voltage (Uc) 3 Tripping time (RCD t) 4 Tripping current (RCD I) Loop impedance and prospective short-circuit current 1 Zs function (for systems without RCD) 2 Zsrcd function (for systems with RCD) Line impedance and prospective short-circuit current / voltage drop. Earthing resistance TRMS voltage, frequency and phase sequence 1 TRMS voltage (AC/DC) 2 Voltage of the connection monitor.	.71 .72 .72 .72 .73 .74 .74 .74 .74 .74 .74 .74 .74 .75 .75 .75 .76 .77 .77 .77 .78 .79 .79 .79 .79
	9.1 9.2 9.3 9.4 9.5) Tech 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.4 10.4 10.4 10.4 10.5 10.6 10.7 10.7	Fuse F1 replacement Cleaning Calibration Service & support Disposal and environmental protection mical data Insulating resistance Low-impedance resistance / continuity test 1 Low-impedance resistance R LOW 2 Continuity test Residual current protection devices (RCDs) 1 General data 2 Contact voltage (Uc) 3 Tripping time (RCD t) 4 Tripping current (RCD I) Loop impedance and prospective short-circuit current 1 Z stanction (for systems without RCD) 2 Z strcd function (for systems with RCD) 2 Line impedance and prospective short-circuit current / voltage drop Earthing resistance TRMS voltage (AC/DC) 2 Voltage of the connection monitor. 3 Frequency	.71 .72 .72 .72 .73 .74 .74 .74 .74 .74 .74 .74 .74 .75 .75 .75 .76 .77 .77 .77 .77 .78 .79 .79 .79 .79 .79

10.8 10.9 10.10 10.11	TRMS current (AC / DC) via current clamp adapter Single-fault leakage current (ISFL) in IT networks Luminous intensity General data	80 80 81
Appendi	x A Fuse table – Prospective short-circuit current	82
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9	Fuse, type NV Fuse, utilization category gG Line safety switch, tripping characteristic B Line safety switch, tripping characteristic C Line safety switch, tripping characteristic D Line safety switch, tripping characteristic Z Line safety switch, tripping characteristic L Line safety switch, tripping characteristic L	84 86 87 87 88 88
Appendi	x B Standard and optional accessories for specific measuring functions	90
Appendi	x C "Commander" test probe, "Commander" test plug	91
C.1 C.2 C.3 C.4	Safety warnings Batteries Description of the "Commanders" LED indications of the "Commanders"	91 92

1 Preface

BENNING would like to congratulate you on purchasing this BENNING IT 130 installation tester and its accessories. The BENNING IT 130 installation tester is a multifunctional tester for testing electrical installations in compliance with IEC 60364-6 (DIN VDE 0100-600) and EN 50110 (DIN VDE 0105-100).

The device is intended for the following measurements and tests:

- □ TRUE RMS voltage, frequency and rotary field (phase sequence)
- □ low-impedance resistance, continuity test
- □ insulating resistance
- residual current protection devices (RCD)
- loop impedance without RCD tripping
- line impedance and voltage drop
- TRUE RMS current by means of optional current clamp adapters
- a earthing resistance by means of optional earthing kit
- □ luminous intensity by means of optional luxmeter
- □ single-fault leakage current in IT networks

The graphic display with background lighting allows easy reading of measuring results, indications, measuring parameters and messages. Two "PASS" / "FAIL" indications (red / green LEDs) are located next to the LC display.

The BENNING IT 130 installation tester is equipped with all accessories necessary for comfortable testing. It is kept in a padded carrying case together with all accessories.

2 Safety and operating instructions

The following symbols are used both in the operating manual and on the installation tester:

Protection class II

Earth (voltage to earth)

At the end of product life, dispose of the unserviceable device and the batteries via appropriate collecting facilities provided in your community.

 $\mathbf{C}\mathbf{E}$ The device complies with EU directives.

2.1 Warnings

In order to ensure a high degree of operational safety during the tests and measurements and to avoid damaging of the BENNING IT 130 installation tester, the general warnings listed in the following must be adhered to.

Warnings – general information:

- In case the installation tester is not used according to this operating manual, the protection provided by the installation tester might be impaired!
- Please read this operating manual carefully, because otherwise the use of the installation tester might involve dangers for the user, the installation tester or the test object!
- Never use the installation tester or the corresponding accessories, if they exhibit visible damages!
- Absolutely observe all general safety instructions in order to avoid the risk of an electric shock when handling dangerous voltages!
- If the fuse F1 has blown, please follow the instructions of this operating manual to replace it! Only use a fuse complying with the specification (see chapter 7.1) as replacement.
 If one of the fuses F2 or F3 has blown, the device must not be used anymore. In this case, the device must be sent to BENNING for inspection and repair.
- Never use the installation tester in AC supply systems with voltages higher than 550 V AC.
- Any service, repair or adjustments of the installation tester and of the corresponding accessories must be carried out by authorized qualified personnel only!

- Please use standard or optional BENNING accessories only which are available from your authorized specialty retailer!
- Please observe that the measuring category of some accessories might be lower than that of the installation tester. Test probes and "Commander" test probes are provided with detachable protective caps. If these attachable protective caps are removed, the measuring category will be reduced to CAT II. Please check the markings of the accessories! without attachable protective cap, 18 mm tip: CAT II 1000 V to earth

with attachable protective cap, 4 mm tip:

CAT II 1000 V to earth CAT II 1000 V / CAT III 600 V / CAT IV 300 V to earth

- The installation tester comes with rechargeable NiMh storage batteries. The storage batteries must be replaced only as shown on the label at the battery compartment cover or as described in this operating manual and must be replaced with storage batteries of the same type only. Do not use standard alkaline batteries while the charger is connected, because otherwise these batteries might explode!
- Dangerous voltages are applied to the interior of the device! Disconnect all test cables, disconnect the charger and switch off the installation tester before opening the cover of the battery / fuse compartment.
- Do not connect any voltage source to the C1 input. This input must be used for connection of the current clamp adapters only. The maximum input voltage is 3 V!
- Absolutely observe all common safety instructions in order to avoid the risk of an electric shock when working on electrical installations!

Warnings with regard to measurements:

Insulating resistance

- Measurements of the insulating resistance must be carried out only at test objects which are free of voltage!
- Never touch the test object during measurement before it is completely discharged! Danger of life-threatening electric shocks!
- □ If the insulating resistance is measured on capacitive test objects, discharging might take place time-delayed! During discharge, the warning as well as the current

voltage (Udisch) are displayed until the voltage falls below 30 V.

Do not connect any measuring input to an external voltage higher than 550 V (AC or DC) in order not to damage the installation tester!

Low-impedance measurement / continuity test

- Low-impedance measurements / continuity tests must be carried out on discharged test objects only!
- □ The test result might be influenced by parallel impedances.

Testing the PE connection

If a phase voltage is detected at the PE connection, immediately stop all measurements. Make sure that the error in the installation is eliminated before going on with the measurements!

Remarks with regard to measurements:

General

- □ The ▲ icon means that the selected measurement cannot be carried out due to irregular conditions at the input terminals.
- Carry out measurements of the insulating resistance, low-impedance resistance, continuity and earthing resistance on discharged objects only!
- The "PASS" / "FAIL" indication is activated, if a limiting value has been defined. Choose appropriate limiting values for evaluating the measuring results.
- If only two of the three test cables are connected to the electrical installation to be tested, only the voltage value between those two test cables shall be valid.

Insulating resistance

- □ The three-wire test cable as well as the "Commander" test probe can be used for measuring the insulating resistance.
- □ If a voltage higher than 30 V (AC or DC) is measured at the testing terminals, the measurement of the insulating resistance cannot be carried out.
- The installation tester automatically discharges test objects after the measurement is finished.
- Double-click the "TEST" key to carry out a continuous measurement.

Low-impedance measurement / continuity test

- □ If a voltage higher than 10 V (AC or DC) is measured at the testing terminals, the lowimpedance measurement / continuity test cannot be carried out.
- Before carrying out a low-impedance measurement / continuity test, compensate the test cable resistance (if necessary).

Earthing resistance

- □ If a voltage higher than 30 V (AC or DC) is measured at the testing terminals, the measurement of the earthing resistance cannot be carried out.

Residual current protection devices (RCDs)

- The parameters set for a measuring function will be taken over for other RCD measurements as well!
- Contact voltage measurement usually does not involve any tripping of the residual current protection devices (RCD). However, the tripping threshold might be exceeded due to leakage currents via the protective conductor (PE) or via capacitive connections between the conductors L and PE.
- Compared to the loop impedance RL (contact voltage subresult), the measurement of the loop impedance Zsrcd needs more time, but offers a considerably higher degree of accuracy.
- The tripping time and tripping current measurement is only carried out, if the contact voltage at nominal differential current is lower than the preset limiting value of the contact voltage.
- □ The automatic test sequence (RCD AUTO function) is stopped, if the tripping time is outside the admissible value.

Loop impedance

- □ The lower limiting value of the prospective short-circuit current depends on the fuse type, on the fuse current rating and tripping time as well as on the Isc scaling factor.
- The stated accuracy of the parameters tested shall only apply, if the mains voltage is stable during measurement.
- Loop impedance measurements (Zs) involve tripping of residual current protection devices (RCDs).
- Loop impedance measurements (Zsrcd) normally do not involve tripping of the residual current protection device (RCD). However, the tripping threshold might be exceeded due to leakage currents flowing to the protective conductor (PE) or via the capacitive connection between the conductors L and PE.

Line impedance / voltage drop

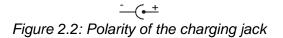
- During phase-to-phase measurements of the line impedance Z_I(L-L) with the test cables PE and N being connected, a warning of dangerous PE voltages is displayed. However, the measurement will be carried out.
- □ The stated accuracy of the parameters tested shall only apply, if the mains voltage is stable during measurement.
- Depending on the connection voltage detected, the test terminals L and N are inverted automatically.

Luminous intensity

- □ Shadows and irregular exposure to light might influence the measuring result!
- Artificial light sources reach their full capacity (see Technical Data of the light sources) only after a certain time and therefore should be switched on until they reach this capacity before carrying out measurements.

Testing the protective conductor connection (PE)

- $\hfill\square$ The PE connection can be tested only in switch positions "FI/RCD", "Z_s(L-PE)" and "Z_l(L-N/L)"!
- For correct measurement of the PE connection, the "TEST" key must be touched for several seconds.
- Make sure not to stand on an insulated floor, because otherwise the test result might be incorrect!


2.2 Batteries / storage batteries and charger

The installation tester can be operated with six alkaline batteries (type AA) or with rechargeable NiMh batteries (storage batteries). The specified operating time refers to storage batteries with a nominal capacity of 2100 mAh. The batteries' state of charge is permanently displayed in the lower right part of the LC display. If the battery voltage is too low, this will be displayed as shown in figure 2.1. This indication is shown several seconds before the tester switches off.

BATTER	RY TEST
	700 1 011
	TOO LOW 6.6V

Figure 2.1: Indication of discharged batteries

The rechargeable NiMh storage batteries will be charged automatically as soon as the charger is connected with the charging jack of the installation tester. The polarity of the charging jack will be displayed as shown in figure 2.2. An integrated protective circuit controls the charging process and ensures an optimum battery lifetime.

Symbol:

Indication of the storage battery charging process

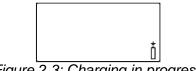


Figure 2.3: Charging in progress

General warnings:

- If the installation tester is connected to an installation, a dangerous voltage might be applied to the battery compartment! Disconnect all test cables / accessories from the installation tester and switch the installation tester off before replacing the batteries / storage batteries and before opening the cover of the battery / fuse compartment!
- Please make sure that the batteries / storage batteries are inserted correctly, because otherwise the installation tester cannot be operated and the storage batteries will discharge.
- Do not recharge alkaline batteries!
- Use only the charger included in the delivery!

Notes:

- Before the first use! Insert the storage batteries into the battery compartment and charge the storage batteries for at least 16 hours.
- The charger inside the installation tester is a cell pack charger. This means that the storage batteries are connected in series during charging. For this reason, the storage batteries must be equivalent (same state of charge, same condition, same type and same age).
- □ If the installation tester is not used for a longer period of time, remove all storage batteries from the battery compartment.
- Use alkaline batteries or rechargeable NiMh batteries of size AA only! It is recommended to use storage batteries with a minimum capacity of 2100 mAh.

- Unpredictable chemical processes might occur during the charging of storage batteries that have not been used for a longer period of time (more than 6 months). In this case, it is recommended to repeat the charging / discharging cycle at least 2 to 4 times.
- If no improvement is achieved after several charging / discharging cycles, every storage battery should be tested individually (by comparing the storage battery voltages, testing by means of a cell charger etc.). It is very likely that only some of the storage batteries have lost capacity. If one storage battery differs from the other ones, this might affect the correct functioning of the entire storage battery block!
- The effects described above must not be confused with the normal battery capacity decrease over time. All rechargeable batteries (storage batteries) lose some of their battery capacity when being charged / discharged several times. This information is provided in the technical data specified by the battery manufacturer.

2.3 Standards applied

The BENNING IT 130 installation tester is manufactured and tested in compliance with the following regulations:

Flectromagnetic	compatibility (EMC)
EN 61326-1	Electrical equipment for measurement, control and laboratory use
	– EMC requirements
	Class B (hand-held equipment in controlled EM environments)
Safety (LVD)	
EN 61010-1	Safety requirements for electrical equipment for measurement, control and
	laboratory use – Part 1: General requirements
EN 61010-2-030	Safety requirements for electrical equipment for measurement, control and
	laboratory use – Part 2-030: Particular requirements for testing and
	measuring circuits
EN 61010-031	Safety requirements for electrical equipment for measurement, control and
	laboratory use – Part 031: Safety requirements for hand-held probe
	assemblies for electrical measurement and test
EN 61010-2-032	Safety requirements for electrical equipment for measurement, control and
	laboratory use – Part 2-032: Particular requirements for hand-held and
	hand-manipulated current sensors for electrical test and measurement
Functionality	
EN 61557	Electrical safety in low-voltage distribution systems up to 1000 V_{AC} and
21101001	1500 V_{DC} – Equipment for testing, measuring or monitoring of protective
	measures
	Part 1: General requirements
	Part 2: Insulation resistance
	Part 3: Loop impedance
	Part 4: Resistance of earth connection and equipotential bonding
	Part 5: Resistance to earth
	Part 6: Effectiveness of residual current devices (RCD) in TT, TN and IT
	systems
	Part 7: Phase sequence
	Part 10: Combined measuring equipment for testing, measuring or
	monitoring of protective measures
DIN 5032	Photometry
	Part 7: Classification of illuminance meters and luminance meters
Reference standa	ards for electrical installations and components
EN 61008	Residual current operated circuit-breakers without integral overcurrent
	protection for household and similar uses (RCCBs)
EN 61009	Residual current operated circuit-breakers with integral overcurrent
	protection for household and similar uses (RCBOs)
EN 60364-4-41	Low-voltage electrical installations – Part 4-41: Protection for safety –
	Protection against electric shock
IEC 62955	Residual direct current detecting device (RDC-DD) to be used for mode 3
	charging of electric vehicles
BS 7671	IEE Wiring Regulations (17 th edition)
AS / NZS 3017	Electrical installations – Verification guidelines

Note on EN and IEC standards:

This operating manual contains references to European standards. All standards of the series EN 6XXXX (e.g. EN 61010) correspond to the respective IEC standards with the same number (e.g. IEC 61010). They only differ in the modified parts due to the European harmonization procedures.

3 Device description

3.1 Front panel

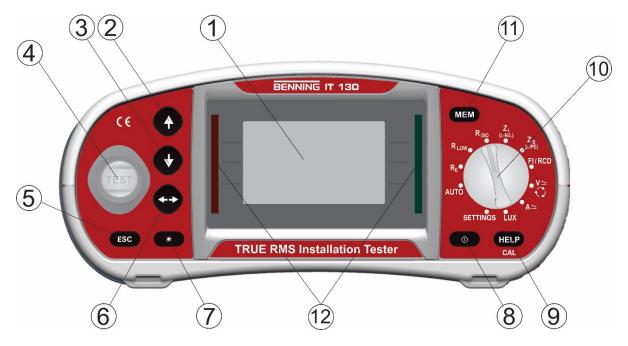


Figure 3.1: Front panel

Caption:

1	LCD	Matrix display with 128 x 64 pixels and background lighting	
2	UP	Modifies selected parameters	
3	DOWN		
4	TEST	Start of measurement	
4		PE contact electrode for protective conductor connection	
5	ESC	Back / cancel	
6	ТАВ	Selects parameters in the measuring function selected	
7	Backlight, Contrast	Modifies background lighting and contrast	
8	ON / OFF	Switches the tester on or off; automatic switch-off ("APO") after 15 minutes without pressing a key	
9	HELP / CAL	Help function with connection diagrams (press approx. 2 seconds for R LOW and ΔU) For calibrating the test cables in the R LOW and CONTINUITY function	
		Starts the Z_{REF} measurement in the sub-function ΔU voltage drop	
10	Function selector switch	Rotary switch for selecting the measuring functions, "AUTO" switch position and "SETTINGS" mode	
11	МЕМ	Storage / recall of measuring results; stores the settings of the current clamp adapter	
12	Green / red LED	PASS / FAIL indication of the measuring results	

3.2 Connection panel

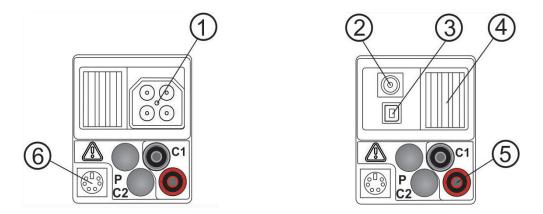


Figure 3.2: Connection panel

Caption:

1	Test connection	Measuring inputs / outputs
2	Charging jack	For charging rechargeable NiMh storage batteries
3	USB port	USB interface (1.1) for PC connection
4	Protective cover	
5	C1	Measuring input for optional current clamp adapter BENNING CC 1 / BENNING CC 3
6	PS/2 port	Serial RS232 interface for PC connection; connection for optional BENNING luxmeter type B (044111) and barcode scanner (009371)

- □ The maximum admissible voltage between the testing terminals and earth is 550 V!
- □ The maximum admissible voltage between the testing terminals is 550 V!
- □ The maximum admissible voltage at the measuring input C1 is 3 V!
- □ The maximum admissible short-term voltage of the external charger is 14 V!

3.3 Rear panel

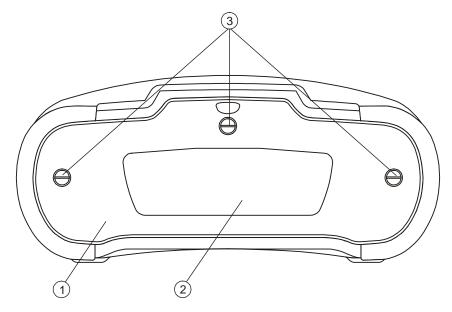


Figure 3.3: Rear panel

Caption:

1	Cover of the battery / fuse compartment
2	Information label
3	Screws for the battery / fuse compartment cover
	2 1 1 1 1 1 1 1 1 1 1

(3)

Figure 3.4: Battery / fuse compartment

(4)

Caption:

1	Fuse F1	M 315 mA / 250 V
2	Fuses F2 and F3	If one of the fuses F2 or F3 has blown, the device must not be used anymore. In this case, the device must be sent to BENNING for inspection and repair.
3	Serial number label	
4	Storage batteries / batteries	Size AA, alkaline / rechargeable NiMh, quantity: 6 pieces

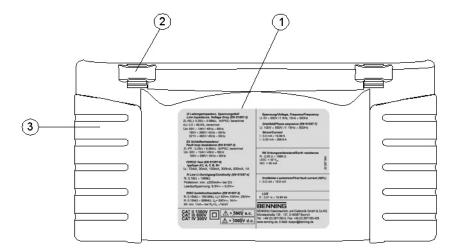


Figure 3.5: Bottom view

Caption:

1	Information label
2	Carrying strap openings
3	Lateral covers

3.4 Carrying the installation tester

The installation tester can be carried in different ways by means of the accessories included in the standard scope of delivery.

The tester can be hung around the operator's neck by means of the carrying strap.

It is also possible to carry the tester in the padded carrying case and to use it in a horizontal position. The carrying case is provided with an aperture for passing through the test cable.

3.4.1 Attachment of the carrying strap

Please choose one of the two methods shown:

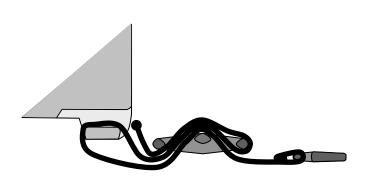


Figure 3.6: First method

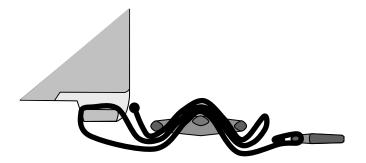


Figure 3.7: Alternative method

Please check the carrying strap for safe fastening regularly.

3.5 Scope of delivery and optional accessories

3.5.1 Standard scope of delivery

- 1 x BENNING IT 130 installation tester
- 1 x padded carrying case (item no. 10008291)
- 1 x "Commander" test probe (switchable by means of "TEST" key) (item no. 044155)
- 1 x test cable with shock-proof plug (item no. 10008295)
- 1 x universal three-wire test cable (black, blue, green) (item no. 10008296)
- 1 x set of test probes (black, blue, green) (item no. 10008304 10008306)
- 1 x set of alligator clips (black, blue, green) (item no. 10008301 10008303)
- 1 x carrying strap (item no. 10008290)
- 1 x RS 232-PS/2 interface cable (item no. 10008313)
- 1 x USB interface cable (item no. 10008312)
- 6 x rechargeable NiMh storage batteries of size AA
- 2 x batteries of size AAA
- 1 x charger (item no. 10008308)
- 1 x quick reference guide
- 1 x calibration certificate

The logging software BENNING PC-Win IT 130-200 and the operating manual (PDF file) can be found on the product website of the BENNING IT 130 for free download. http://tms.benning.de/it130

3.5.2 Optional accessories

Earthing kit Earthing kit, 2 earth rods, 3 test cables, $2 \times L = 20 \text{ m}, 1 \times L = 4.5 \text{ m}$ Item no.: 044113	
Current clamp adapters BENNING CC 1, 1 A to 400 A AC Output: 1 mV per 1 A Item no.: 044037 BENNING CC 3, 0.2 A to 300 A AC / DC Output: 1 mV / 10 mV per 1 A Item no.: 044038	19 11
Luminous intensity sensor BENNING Luxmeter type B For the planning and installation of interior and exterior lighting. Item no.: 044111	
"Commander" test plug For shock-proof socket, switchable with "TEST" and "MEM" keys, with "PASS" / "FAIL" indication by means of green/red LED, PE contact electrode for detecting the phase voltage at the protective conductor connection (PE). Item no.: 044149	
CEE measuring adapter BENNING TA 6 Measuring adapter for testing 5-pin 16 A CEE sockets. The following measurements are supported: Loop and line impedance, insulation, RCD testing, voltage and phase sequence (rotating field) Item no.: 044168	
BENNING TA 7-16, TA 7-32, TA 7-63 CEE measuring adapter for testing 5-pin CEE sockets, universally applicable due to 4 mm safety sockets BENNING TA 7-16, 16 A (044040) BENNING TA 7-32, 32 A (044041) BENNING TA 7-63, 63 A (044042)	

CEE measuring adapter16 A, 5-pin, for measuring the voltage and phase
sequence (rotary field) at 16 A CEE sockets.
Item no.: 044148Image: Colspan="2">Colspan="2"

4 Operating the BENNING IT 130 installation tester

4.1 Indications and acoustic warning signals

4.1.1 Connection monitor

The connection monitor shows the voltages applied to the testing terminals as well as information on active testing terminals in the AC mains.

L PE N 231 0 0 231	The voltage applied is displayed together with the testing terminal indication. All three testing terminals L, N and PE are used for the selected measurement.
	The voltage applied is displayed together with the testing terminal indication. The testing terminals L and N are used for the selected measurement.
L PE N 230 0 0	The testing terminals L and PE are active testing terminals. The testing terminal N should be connected as well to show a correct input voltage.
	The polarity of the testing voltage applied (R LOW, R ISO) is displayed at the output terminals L and N.

4.1.2 Battery indication

The battery indication shows the current state of charge of the storage battery as well as whether an external charger is connected.

	Battery capacity indication
۵	Low state of charge. The storage battery's state of charge is too low to ensure correct measuring results. Replace the batteries or recharge the storage batteries.
Ō	Charging in progress (with the charger being connected)

4.1.3 Warnings and messages

The following warnings and messages are displayed:

4	Warning! High voltage is applied to the testing terminals.
<u>4</u>	Warning! Dangerous voltage at the PE connection! Immediately stop the measuring process and eliminate the fault / the connection problem before continuing with the measurement!
DC VOLTAGE!	Warning! Too high DC voltage (> 50 V DC) applied to the testing terminals!
	The conditions at the input terminals allow starting the measurement. Please observe further warnings and messages!
X	The conditions at the input terminals do not allow starting the measurement. Please observe further warnings and messages!
	Measurement is in progress. Please observe warnings that might be displayed!
	The tester is overheated. Measurements are interrupted until the internal temperature has dropped below the admissible limiting value.

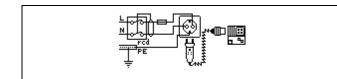
	Results can be saved.
	A high interference voltage has been detected during measurement. This might result in incorrect measuring results.
Ф	L and N have been interchanged.
l∡∌	RCD has been tripped during measurement (in RCD functions).
Pred A	Portable RCD (PRCD) has been selected (only for documentation purposes).
EV	RCD of type EV (Electric Vehicle)
MI red	RCD of type MI (Mobile Installation)
CAL V	The test cable resistance for low-impedance measurement / continuity test has been compensated.
٢	High earthing resistance of the measuring probes. This might result in incorrect measuring results.
VH.	The current is too low for the accuracy specified. This might result in incorrect measuring results. Please check in the current clamp adapter settings whether the sensitivity of the current clamp adapter can be increased.
CLIP	The measuring signal is outside the measuring range This might result in incorrect measuring results.
SF	Single fault in the IT network.
Ð	Fuse F1, F2 or F3 is defective. If one of the fuses F2 or F3 has blown, the device must not be used anymore. In this case, the device must be sent to BENNING for inspection and repair.

4.1.4 Evaluation field

\checkmark	The measuring result is within the preset limiting values (green LED).
X	The measuring result is outside the preset limiting values (red LED).
\otimes	Measurement has been aborted. Please observe the warnings and messages displayed.

4.1.5 Acoustic warning signals

Continuous sound	Warning! Dangerous voltage at the PE connection!
------------------	--


4.1.6 Help menu ("HELP" key)

HELP Opens the help menu.

Help menus are available for all measuring functions. The help menu contains graphic connection diagrams showing how to connect the installation tester to the electrical installation. After having selected the desired measuring function, press the "HELP" key to view the corresponding help menu.

Keys used in the help menu

UP / DOWN	Selects the next / previous connection diagram
ESC / HELP / function selector switch	Use these keys to exit the help menu.

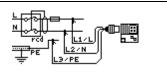
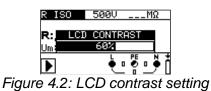



Figure 4.1: Connection diagrams of the help menu

4.1.7 Background lighting and contrast

Use the key for background lighting and contrast to make the following settings:

Briefly press the key	Activates the background lighting for approx. 10 seconds
Press and hold the key for 1 second	Switches the background lighting on permanently until the tester switches off or the key is pressed again
Press and hold the key for 2 seconds	Allows to set the LCD contrast

Keys used for contrast setting

UP	Increases the contrast
DOWN	Reduces the contrast
TEST	Applies the adjusted contrast
ESC	Exits the settings without any changes

4.2 Function selector switch

The function selector switch is intended for selecting the

- test and measuring functions
- □ "AUTO" mode
- SETTINGS" mode

Key functions after having selected the test / measuring function:

UP / DOWN	Selects the sub-function of the adjusted test / measuring function (only for rotary switch positions R_{LOW} , Z_I , Z_S , FI/RCD)
ТАВ	Selects the parameters and limiting values
TEST	Start of measurement
MEM	Storage / recall of the measuring results
ESC	Back / cancel

UP / DOWN	Modifies the selected parameter
ТАВ	Selects the next parameter
MEM	Storage / recall of the measuring results

Parameters and limiting values for evaluating the measuring results:

according to
г

Please find further information on how to use the test / measuring functions of the installation tester in chapter *5. Measurements*.

4.3 "AUTO" mode

Turn the function selector switch to the "**AUTO**" mode to select the test / measuring functions carried out by means of the "Commander" test probe or the optional "Commander" test plug for shock-proof sockets (044149).

Select the test / measuring function by means of the Select the test / measuring function by means of the Select the test probe and the "Commander" test probe and the optional "Commander" test plug for shock-proof sockets (044149) in Appendix C.

4.4 "SETTINGS" mode

Turn the measuring function selector switch to the "**SETTINGS**" mode in order to make the following settings at the tester:

- MEMORY (recall data, delete data, delete entire memory)
- **SELECT LANGUAGE** (GB, D, E, F, NL)
- SET DATE / TIME
- **EARTHING SYSTEM** (TN/TT or IT network)
- RCD TESTING (according to EN 61008 / EN 61009, IEC 60364-4-41, BS 7671, AS/NZS 3017)
- **SET Isc FACTOR** (0.20 3.00)
- COMMANDER ON/OFF
- INITIAL SETTINGS (reset to factory settings)
- CLAMP settings (selection of the optional current clamp adapters BENNING CC 1 (044037), BENNING CC 3 (044038))

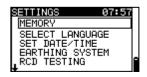


Figure 4.3: "SETTINGS" mode

Keys used:

UP / DOWN	Selects the respective option				
TEST	Confirms the selected option				
ESC / function selector switch	Back / cancel without any changes				

4.4.1 Memory

In this menu, it is possible to recall stored data and to delete the data of a measuring point or even the entire memory. Please refer to chapter **6 Management of measured values** MEMORY RECALL RESULTS DELETE RESULTS CLEAR ALL MEMORY

Figure 4.4: Memory options

for further information. Keys used:

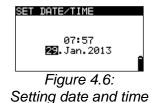
UP / DOWN	Selects the respective option			
TEST	Confirms the selected option			
ESC	Back / cancel to the Settings menu			
Function selector switch Back / cancel to the selected measuring function				

4.4.2 Language

In this menu, it is possible to select the respective language.

SELECT LANGUAGE	
ENGLISH	
DEUTSCH	
ESPANOL	
FRANCAIS	
	ſ

Figure 4.5: Selecting the language



Keys used:

UP / DOWN	Selects the language			
TEST	Confirms the selected language and returns to the Settings menu			
ESC	Back / cancel to the Settings menu			
Function selector switch Back / cancel to the selected measuring function				

4.4.3 Date and time

In this menu, it is possible to set the date and time.

Keys used:

ТАВ	Selects the date / time field				
UP / DOWN	Modifies the selected field				
TEST	Confirms the change and returns to the Settings menu				
ESC	Back / cancel to the Settings menu				
Function selector switch Back / cancel to the selected measuring function					

Note:

□ If the batteries are removed for more than 1 minute, the date and time settings will be lost.

4.4.4 Earthing system (power supply network)

In this menu, it is possible to set the available earthing system (power supply network). The following options are available:

- □ TN / TT network
- IT network

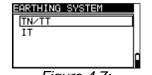


Figure 4.7: Selecting the earthing system

Keys used:

UP / DOWN	Selects the earthing system			
TEST	Confirms the selected earthing system and returns to the Settings			
500				
ESC	Back / cancel to the Settings menu			
Function selector switch Back / cancel to the selected measuring function				

4.4.5 RCD testing

In this menu, it is possible to set the standard used for RCD testing.

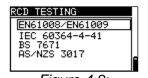


Figure 4.8: Selecting the RCD standard

Keys used:

UP / DOWN	Selects the standard			
TEST	Confirms the selected standard and returns to the Settings menu			
ESC	Back / cancel to the Settings menu			
Function selector switch Back / cancel to the selected measuring function				

The maximum RCD tripping times vary from standard to standard.

The times specified in the individual standards are listed in the following.

By default, the tripping times in compliance with the EN 60364-4-41 standard are preset. The EN 60364-4-41 standard defines different tripping times for TN/IT networks and TT networks as can be seen in table 41.1.

Tripping times in compliance with EN 60364-4-41:

	Uo	$\frac{1}{2} \times I_{\Delta N}^{*)}$	$I_{\Delta N}$	$2 \times I_{\Delta N}$	5×I _{∆N}
TN/IT	≤120 V	t _∆ > 800 ms	t _∆ ≤ 800 ms		
111/11	≤230 V	t _∆ > 400 ms	t _∆ ≤ 400 ms	t 150 mg	t 10 mg
	≤120 V	t _∆ > 300 ms	t _∆ ≤ 300 ms	t _∆ < 150 ms	t _∆ < 40 ms
	≤230 V	t_{Δ} > 200 ms	t _∆ ≤ 200 ms		

Uo: Nominal voltage of external conductor to earth

Example of a tripping time evaluation for I_{Δ_N} , Uo: $\leq 230 \text{ V}$

Setting	Tripping time t _A	Evaluation field	
IEC 60364-4-41 TN/IT	< 400 ms	$\overline{\checkmark}$	
	400 ms < t _∆ < 999 ms	×	
	> 999 ms	×	
IEC 60364-4-41 TT	< 200 ms	$\overline{\checkmark}$	
	200 ms < t _∆ < 999 ms	×	
	> 999 ms	×	

Tripping times in compliance with EN 61008/EN 61009:

	$\frac{1}{2} \times I_{\Delta N}^{*)}$	I∆N	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$
Standard RCDs (undelayed)	t _∆ > 300 ms	t _∆ < 300 ms	t _∆ < 150 ms	t _∆ < 40 ms
Selective RCDs (delayed)	t _∆ > 500 ms	130 ms< t∆< 500 ms	60 ms< t∆< 200 ms	50 ms< t∆< 150 ms

Tripping times in compliance with **BS 7671**:

	$\frac{1}{2} \times I_{\Delta N}^{*)}$	$I_{\Delta}N$	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$
Standard RCDs (undelayed)	t∆> 1999 ms	t _∆ < 300 ms	t _∆ < 150 ms	t _∆ < 40 ms
Selective RCDs (delayed)	t∆> 1999 ms	130 ms< t∆< 500 ms	60 ms< t∆< 200 ms	50 ms< t∆< 150 ms

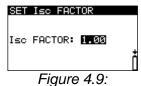
Tripping times in compliance with AS/NZS 3017**):

FF 3 -						
		$\frac{1}{2} \times I_{\Delta N}^{*)}$	IΔN	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$	
RCD type	I _{ΔN} [mA]	t_{Δ}	t_{Δ}	t_{Δ}	t_{Δ}	Remark
1	≤ 1 0		40 ms	40 ms	40 ms	
П	> 10 ≤ 30	> 999 ms	300 ms	150 ms	40 ms	maximum tripping time
111	> 30		300 ms	150 ms	40 ms	maximum inpping time
IV S	. 20	> 000 mg	500 ms	200 ms	150 ms	
	> 30	> 999 ms	130 ms	60 ms	50 ms	minimum non-tripping time

^{*)} Minimum testing time for a current of $\frac{1}{2} \times I_{\Delta N}$, RCD must not trip

^{**)} Testing current and measuring accuracy correspond to the requirements specified by AS/NZS 3017

Maximum testing times and selected testing current for standard (undelayed) RCDs:


Standard	$1/2 \times I_{\Delta N}$	$I_{\Delta}N$	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$
EN 60364-4-41	1000 ms	1000 ms	150 ms	40 ms
EN 61008 / EN 61009	300 ms	300 ms	150 ms	40 ms
BS 7671	2000 ms	300 ms	150 ms	40 ms
AS/NZS 3017 (I, II, III)	1000 ms	1000 ms	150 ms	40 ms

Maximum testing times and selected testing current for selective (delayed) RCDs:

Standard	1∕2×I∆N	IΔN	2×I _{∆N}	$5 \times I_{\Delta N}$
EN 60364-4-41	1000 ms	1000 ms	200 ms	150 ms
EN 61008 / EN 61009	500 ms	500 ms	200 ms	150 ms
BS 7671	2000 ms	500 ms	200 ms	150 ms
AS / NZS 3017 (IV)	1000 ms	1000 ms	200 ms	150 ms

4.4.6 lsc factor (scaling factor)

In this menu, it is possible to set the lsc factor (scaling factor) for calculating the short-circuit current (Ik) in the functions ZI (L-N/L) and Zs (L-PE).

Selecting the lsc factor

Keys used:

UP / DOWN	Modifies the lsc factor
TEST	Confirms the adjusted Isc factor
ESC	Back / cancel to the Settings menu
Function selector switch	Back / cancel to the selected measuring function

The short-circuit current Ik in the power supply system is of particular importance for the selection and testing of protective circuits (fuses, overcurrent protection devices, RCDs). The default value of the Isc factor (Ik) is 1.00. The value has to be set according to local requirements.

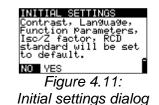
The lsc factor can be set within the range of $0.20 \div 3.00$.

4.4.7 Commander ON/OFF

In this menu, it is possible to enable or disable the "Commander" (switchable test probe). COMMANDER ON/OFF

Selecting the "Commander" support

Keys used:


UP / DOWN	Selects Commander ON (enabled) / Commander OFF (disabled)
TEST	Confirms the selected option
ESC	Back / cancel to the Settings menu
Function selector switch	Back / cancel to the selected measuring function

Note:

The "Commander OFF" (disabled) option is intended for deactivating the operating keys of the "Commander" (except for the background lighting key). It is useful to disable the "Commander", if strong sources of interference might affect the correct functioning of the "Commander".

4.4.8 Initial settings

In this menu, it is possible to reset the settings, measuring parameters and limiting values of the installation tester to their initial (factory) settings.

Keys used:

UP / DOWN	Selects the option [YES, NO]	
TEST	Confirms the selected option	
ESC	Back / cancel to the Settings menu	
Function selector switch	Back / cancel to the selected measuring function	

Note:

- □ If the tester is reset to its initial (factory) settings, all settings made will be lost!
- □ If the batteries are removed for more than 1 minute, all settings made will be lost.

The initial (factory) settings are defined as follows:

Settings of the tester	Default setting
Language	German
Contrast	50 %
Earthing system	TN / TT
Isc factor	1.00
RCD standards	EN 60364-4-41

"Commander" test probe	ON	
Current clamp settings	BENNING CC 3	
Measuring function	Decemeter / limiting velue	
Sub-function	Parameter / limiting value	
RE	No limiting value	
R ISO	without limiting value,	
	nominal testing voltage: 500 V	
R LOW	No limiting value	
CONTINUITY	No limiting value	
ZI (L-N/L) line impedance	Fuse type: none selected	
ΔU voltage drop	ΔU: 4.0 %, Z _{REF} : 0.00 Ω	
Zs (L-PE) loop impedance	Fuse type: none selected	
Zsrcd	Fuse type: none selected	
RCD	RCD t	
	Nominal differential current: I _{ΔN} =30 mA	
	RCD type: AC, undelayed	
	Testing current with initial polarity:	
	Limiting value for contact voltage: 50 V	
	Nominal differential current multiplier: ×1	

Note:

□ It is also possible to reset the tester to its initial (factory) settings by pressing the "TAB" key when simultaneously switching the tester on.

4.4.9 Clamp settings

In the **CLAMP settings** menu, it is possible to configure the C1 measuring input to the current clamp adapter used.

Figure 4.12: Configuring the current clamp measuring input

Setting parameters:

Туре	BENNING CC 1
Measuring range	400 A AC
Туре	BENNING CC 3
Measuring range	40 A / 300 A AC / DC

Selecting the parameters

Keys used:

UP / DOWN	Selects the respective options
TEST	Confirms the selected option
MEM	Saves the settings
ESC	Back / cancel to the Settings menu
Function selector switch	Back / cancel to the selected measuring function

Modifying the selected parameters

Keys used:

UP / DOWN	Modifies the selected parameter
TEST	Confirms the selected parameter
MEM	Saves the settings
ESC	Back / cancel to the Settings menu
Function selector switch	Back / cancel to the selected measuring function

Note:

Please pay attention to the measuring range of the installation tester. The measuring range of the current clamp might be higher than that of the installation tester.

5 Measurements

5.1 TRMS voltage, frequency and phase sequence

The voltages applied to the testing terminals are permanently displayed by means of the connection monitor. In the **VOLTAGE TRMS** measuring range (true RMS voltage value), the measured values for voltage (AC/DC) and frequency as well as the phase sequence (rotary field) detected can be saved. The measurements are carried out in compliance with the EN 61557-7 standard.

Key function as described in chapter **4.2 Function selector switch**

VOLTAGE TR	15
Uln : 2300 Ulpe: 2300	f: 50.0Hz
U1Pe: 2300 UnPe: 00	
UNME: 00	
	230 2

Figure 5.1: Voltage in a single-phase system

Testing parameters

It is not necessary to set any parameters.

Connection plan

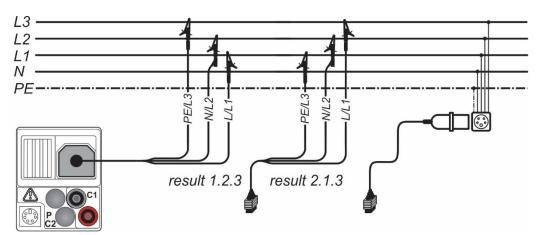


Figure 5.2: Connection of the three-wire test cable and the optional CEE measuring adapter (044148) in a three-phase system

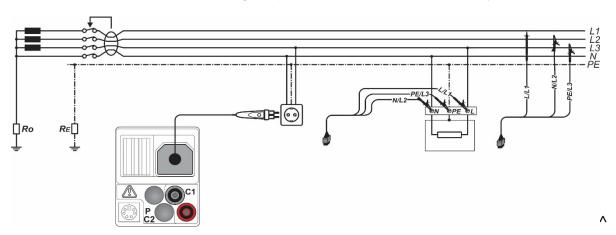
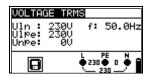



Figure 5.3: Connection of the optional "Commander" test plug (044149) and the three-wire test cable in a single-phase / three-phase system

How to perform voltage measurements

- □ Select the V≅ function by means of the function selector switch. The display shows VOLTAGE TRMS.
- Connect the test cables to the test object (see figure 5.2 and figure 5.3).
- □ Save the measuring result by pressing the "MEM" key.

The measurement is performed immediately after the VOLTAGE TRMS function has been selected.

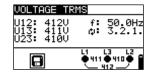


Figure 5.4: Examples for voltage measurements in single-phase and three-phase systems

Results displayed for single-phase systems:

UIn...... voltage between phases and neutral conductor **UIpe**...... voltage between phase and protective conductor **Unpe** voltage between neutral and protective conductors **f** frequency

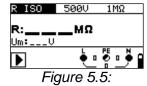
Results displayed for three-phase systems:

U12...... voltage between testing terminals L1 and L2
U13..... voltage between testing terminals L1 and L3
U23.... voltage between testing terminals L2 and L3
1.2.3 ... correct connection – clockwise phase sequence
3.2.1 ... wrong connection – counter-clockwise phase sequence
f ... frequency

Results displayed for IT systems:

U12.....voltage between testing terminals L1 and L2 U1pe.....voltage between testing terminals L1 and PE U2pe.....voltage between testing terminals L2 and PE

f frequency


5.2 Insulating resistance

The measurement of the insulating resistance is performed in order to prove the proper condition of the insulation and in order to exclude electrical danger.

Typical applications are the following cases:

- Insulating resistance between the active conductors (L/N) of an installation and the protective conductor / earth (PE) => protection against electric shock,
- Insulating resistance between the active conductors (L/N) of an installation => protection against short-circuit (over-current) and guarantee of the functional safety,
- Insulating resistance of non-conductive rooms (walls and floors),
- Insulating resistance of earthing cables and
- Resistance of semiconductive (antistatic) floors.

Key function as described in chapter **4.2 Function selector switch**

Insulating resistance

Testing parameters

Uiso	Nominal testing voltage [50 V, 100 V, 250 V, 500 V, 1000 V]
Limiting value	Minimum insulating resistance [without limits (), 0.01 M Ω ÷ 200 M Ω]

Connection plan

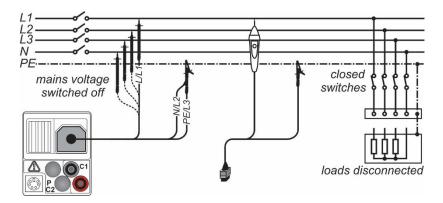


Figure 5.6: Connection of the three-wire test cable and the "Commander" test probe

How to perform insulating resistance measurements

- □ Select the R_{ISO} function by means of the function selector switch.
- Set the required testing voltage and the limiting value (optional).
- Make sure that the test object is free of voltage and discharge available capacities.
- Connect the test cables to the test object (see figure 5.6).
- **Press the "TEST**" key to start the measurement. Double-click the "**TEST**" key (MΩ flashes) to perform a continuous measurement. Press the key again to finish the measurement.
- □ After measurement, wait until the test object is completely discharged.
- □ Save the measuring result by pressing the "**MEM**" key (optional).

Figure 5.7: Example of an insulating resistance measurement

Results displayed:

R.....insulating resistance Um.....testing voltage (actual value)

Attention:

- Measurements of the insulating resistance must be carried out only at test objects which are free of voltage!
- Disconnect all loads and close all switches for measuring the insulating resistance between conductors of the installation.
- Do not touch the test object during measurement and before it is completely discharged! There is danger of a life-threatening electric shock!
- If the insulating resistance measurement is carried out on a capacitive object, automatic discharging might take place time-delayed. The warning symbol and the actual voltage will be displayed during discharging.
- Do not connect the test cables to external voltages higher than 550 V (AC or DC) in order not to damage the BENNING IT 130 installation tester!

5.3 Low-impedance resistance / continuity test

The measurement of the low-impedance resistance / continuity test is intended for testing the protective conductor, earthing conductor and equipotential bonding conductor connections of an electrical installation.

Two su<u>b-function</u>s are available:

- RLOWΩ resistance measurement in compliance with EN 61557-4 with a testing current of 200 mA and polarity reversal
- **CONTINUITY** continuous continuity test with a reduced testing current of 7 mA.

Key function as described in chapter **4.2 Function selector switch**

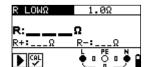


Figure 5.8: Low-impedance resistance RLOW Ω with a testing current of 200 mA

Testing parameters

Test	Sub-function [R LOWΩ, CONTINUITY]
Limiting value	Maximum resistance [without limits (), 0.1 $\Omega \div 20.0 \Omega$]

Additional testing parameter for continuity test sub-function:

Buzzer ON (sounds if the resistance is lower than the limiting value set) or OFF

5.3.1 Low-impedance resistance with a testing current of 200 mA

The resistance measurement is performed with automatic polarity reversal of the testing voltage.

Connection plan

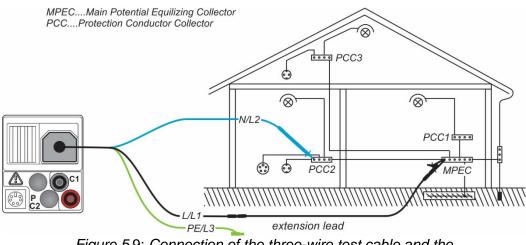


Figure 5.9: Connection of the three-wire test cable and the optional 40 m measuring line BENNING TA 5 (044039)

BENNING

How to perform low-impedance measurements R LOWΩ

- □ Select the **R**_{LOW} function by means of the function selector switch.
- **\square** Set the sub-function to **R LOWΩ**.
- □ Set the limiting value (optional).
- Connect the test cables to the installation tester and compensate the test cable resistance, if necessary (see section 5.3.3 Compensation (null balance) of the test cable resistance).
- □ Make sure that the test object is free of voltage and discharge available capacities.
- Connect the test cables to the test object (see figure 5.9).
- □ Press the "TEST" key to start the measurement.
- □ Save the measuring result by pressing the "MEM" key (optional).

Figure 5.10: Example of a low-impedance measurement $RLOW\Omega$

Results displayed:

R..... R LOW Ω – low-impedance resistance

R+..... partial result at positive polarity

R-..... partial result at negative testing polarity

5.3.2 Continuity test with a testing current of 7 mA

This test function can be compared to the continuity test function of a digital multimeter or of a continuity tester with low testing current. The continuous test is done without polarity reversal and can be used for testing inductive components.

Connection plan

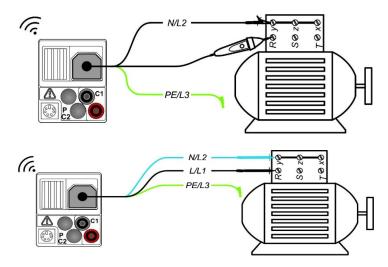


Figure 5.11: Using the "Commander" test probe and the three-wire test cable

How to perform continuity tests

- □ Select the R Low function by means of the function selector switch.
- Set the sub-function to **CONTINUITY**.
- □ Set the limiting value (optional).
- Connect the test cables to the installation tester and compensate the test cable resistance, if necessary (see section 5.3.3 Compensation (null balance) of the test cable resistance).
- □ Make sure that the test object is free of voltage and discharge available capacities.
- Connect the test cables to the test object (see figure 5.11).
- Press the "**TEST**" key to start the measurement.
- □ Press the "**TEST**" key again to stop the measurement.
- □ Save the measuring result by pressing the "**MEM**" key (optional).

Figure 5.12: Example of a continuity test

Result displayed:

R..... resistance

5.3.3 Compensation (null balance) of the test cable resistance

This chapter describes how to compensate the test cable resistance in the low-impedance measurement (R LOW Ω) and continuity test (CONTINUITY) functions. Compensation is necessary, because the test cable resistance and the internal resistance of the installation tester might influence the measuring result. The compensation of the test cables is particularly required when using measuring lines of different lengths.

The **the list cable resistance has been compensated successfully.**

Connection plan

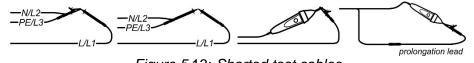


Figure 5.13: Shorted test cables

How to carry out compensation

- \Box Select the **R** LOW Ω or **CONTINUITY** function.
- Connect the test cables to the installation tester and short-circuit the test cables (see figure 5.13.)
- □ Press the "**TEST**" key to perform the resistance measurement.
- Press the "CAL" key to compensate the test cable resistance.

Figure 5.14: Result before calibration

rln:0.0	

Figure 5.15: Result after calibration

Note:

□ The highest value for test cable compensation is 5 Ω . If the resistance is higher, the compensation value will be reset to the default value.

The kicon is displayed, if the test cable resistance has not been compensated.

5.4 RCD testing

The testing of RCDs in RCD-protected installations requires various tests and measurements. The measurements are based on the EN 61557-6 standard.

The following measurements and tests can be performed:

- Contact voltage, tripping time, tripping current and
- Automatic RCD testing

Key function as described in chapter **4.2 Function selector switch**

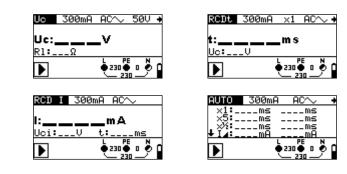


Figure 5.16: RCD tests

Testing parameters

Test	Sub-function [Uc, RCDt, RCD I, AUTO]
$I_{\Delta N}$	Nominal tripping differential current I _{AN}
	[10 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1000 mA]
RCD	Type [AC, A, F, B, B+]
type	Initial polarity [~,~,~,~, <u>*</u> , <u>*</u>]
	Properties
	[selective S], standard undelayed , PRCD, PRCD-S, PRCD-K,
	EV RCD, MI RCD].
MUL	Multiplier of testing current [$\frac{1}{2}x$, 1x, 2 x, 5xl _{ΔN}]
Ulim	Limiting value of contact voltage [25 V, 50 V]

Note:

- □ The limiting value of the contact voltage can be set only in the Uc sub-function.
- Selective (delayed) RCDs have delayed tripping times. As the contact voltage measurement and other RCD tests influence delayed RCDs, it takes a certain time until they have returned to their normal condition. For this reason, a time delay of 30 seconds is added before the standard tripping test is performed.
- During testing of some portable PRCDs (e.g. PRCD-K) in which the protective conductor is guided through the converter in opposite direction, this portable RCD trips already at the 0.5-fold value of the nominal tripping differential current. The installation tester evaluates the early tripping as "accidental tripping" and aborts the test without any measuring result. If this test has been carried out with a positive result, i.e. it has been proven that the portable PRCD trips at the 0.5-fold value of the nominal tripping differential current and thus the protective conductor is not interrupted, it is possible to continue the test by changing the contacting of the protective conductor. In this case, it is necessary to establish a contact to the protective conductor (PE) of an adjacent socket instead of establishing a contact to the protective conductor (PE) of the coupling socket for further testing. Then, the test can be performed just as for an ordinary RCD.
- Testing of the AC function of the RCDs of types EV and MI is performed in the same way as for a general (non-delayed) RCD.

- Testing of the DC function of the RCDs of type EV is performed with a direct current in accordance with the standard IEC 62955.
- Testing of the DC function of the RCDs of type MI is performed with a direct current, whereby the thresholds of the tripping time and the tripping current are identical to those of the tests of the RCDs of type B.

Connection plan

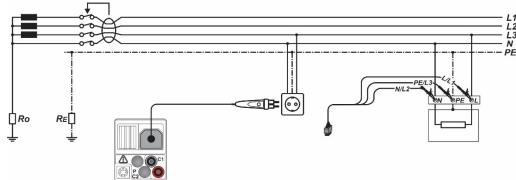


Figure 5.17: Connection of the optional "Commander" test plug (044149) and the three-wire test cable

5.4.1 Contact voltage (Uc)

Leakage current flowing to earth via the protective conductor connection causes a voltage drop at the earthing resistance, i.e. a voltage difference between the PE equipotential bonding and earth. This voltage difference is called contact voltage and is applied to all accessible conductive parts connected to protective earth (PE). The contact voltage always should be lower than the maximum admissible contact voltage. Contact voltage is measured with a testing current lower than $\frac{1}{2} I_{\Delta N}$ in order to avoid tripping of the RCD and then to be normalized to the nominal value $I_{\Delta N}$.

How to perform contact voltage measurements

- Select the **FI/RCD** function by means of the function selector switch.
- □ Set the sub-function to Uc.
- \Box Set the testing parameters.
- Connect the test cables to the test object (see figure 5.17).
- Press the "**TEST**" key to start the measurement.
- Save the measuring result by pressing the "**MEM**" key (optional).

The contact voltage displayed refers to the rated differential current of the RCD and is multiplied with an appropriate factor for safety reasons. The factor 1.05 is applied in order to avoid a negative tolerance of the result. Table 5.1 describes how the contact voltage is calculated.

RCD type		Contact voltage Uc proportional to	Nominal value $I_{\Delta N}$	
AC, EV/MI (AC part)		1.05×I _{∆N}	any	
AC	S	2×1.05×I _{∆N}		
A, F		1.4×1.05×I _{∆N}	≥ 30 mA	
A, F	S	2×1.4×1.05×I _{∆N}		
A, F		2×1.05×I _{∆N}	<30 mA	
A, F	S	2×2×1.05×I _{∆N}		
EV/MI (AC part)		1.05×I _{∆N}	30 mA	
B, B+		2×1.05×I _{∆N}	any	
B, B+	S	2×2×1.05×Ι _{ΔΝ}		

Table 5.1: Relation between Uc and $I_{\Delta N}$

The loop resistance is a purely indicative value and is calculated from the contact voltage (without additional proportional factors). $R_L = \frac{U_C}{I_{AAV}}$.

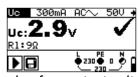


Figure 5.18: Example of a contact voltage measurement

Results displayed:

Uc.....contact voltage

RL.....loop resistance (fault loop resistance)

5.4.2 Tripping time (RCDt)

The tripping time measurement serves to test the sensitivity of the residual current protection devices (RCDs) at different nominal tripping differential currents $I_{\Delta N}$.

How to perform tripping time measurements

- Select the **FI/RCD** function by means of the function selector switch.
- □ Set the sub-function to RCDt.
- □ Set the testing parameters.
- Connect the test cables to the test object (see figure 5.17).
- □ Press the "TEST" key to start the measurement.
- Save the measuring result by pressing the "**MEM**" key (optional).

RCDt	300mA	$\times 1$	AC~~ +
.19	9.6	ne	- <i>\</i>
Uc:2			-
XO		<u> </u>	• •

Figure 5.19: Example of a tripping time measurement

Result displayed:

ttripping time Uc.....contact Voltage

5.4.3 Tripping current (RCD I)

For tripping current measurement, a continuously increasing fault current serves to determine the limiting sensitivity for RCD tripping. The installation tester increases the fault current in small steps within the whole range as follows:

$\frac{1}{1000} = \frac{1}{100} = 1$			
RCD type	Increasing fa	Curve	
KCD type	Initial value	Final value	shape
AC, EV/MI (AC part)	$0.1 \times I_{\Delta N}$	$1.1 \times I_{\Delta N}$	sinusoidal
A, F (I _{∆N} ≥ 30 mA)	$0.1 \times I_{\Delta N}$	1.5×I _{∆N}	pulaating
A, F (I _{∆N} = 10 mA)	$0.1 \times I_{\Delta N}$	$2.2 \times I_{\Delta N}$	pulsating
EV/MI (AC part)	0.1×Ι _{ΔΝ}	$1.1 \times I_{\Delta N}$	sinusoidal
B, B+, MI (DC part)	$0.1 \times I_{\Delta N}$	$2.2 \times I_{\Delta N}$	DC
EV (DC part)	1.2 mA	6.0 mA	DC

Norm **EN 60364-4-41**, (SETTINGS mode \rightarrow RCD TESTING):

Norm **EN 61008/EN 61009**, (SETTINGS mode \rightarrow RCD TESTING):

RCD type	Increasing fault current		Curve chone
RCD type	Initial value	Final value	Curve shape
AC, EV/MI (AC part)	$0.2 \times I_{\Delta N}$	$1.1 \times I_{\Delta N}$	sinusoidal
A, F (I _{∆N} ≥ 30 mA)	$0.2 \times I_{\Delta N}$	1.5×I∆N	pulsating
A, F (I _{∆N} = 10 mA)	$0.2 \times I_{\Delta N}$	2.2×I _{ΔN}	puisating
EV/MI (AC part)	$0.2 \times I_{\Delta N}$	$1.1 \times I_{\Delta N}$	sinusoidal
B, B+, MI (DC part)	$0.2 \times I_{\Delta N}$	2.2×I _{ΔN}	DC
EV (DC part)	1.2 mA	6.0 mA	DC

The maximum testing current is I_{Δ} (tripping current) or corresponds to the final value, if the RCD does not trip.

How to perform tripping current measurements

- Select the **FI/RCD** function by means of the function selector switch.
- □ Set the sub-function to **RCD**.
- □ Set the testing parameters.
- Connect the test cables to the test object (see figure 5.17).
- Press the "TEST" key to start the measurement.
- □ Save the measuring result by pressing the "**MEM**" key (optional).

Figure 5.20: Example of a tripping current measurement

Results displayed:

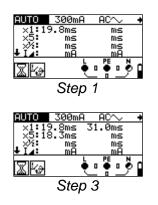
Itripping current

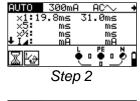
Uci......contact voltage at tripping current I or final value, if RCD does not trip ttripping time

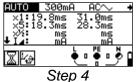
5.4.4 Automatic test

The automatic RCD test is intended to perform a complete RCD test (tripping time at different fault currents, tripping current and contact voltage) in a sequence of automatic tests controlled by the installation tester.

Additional key


HELP / DISPLAY	As soon as measurement is finished, the "HELP" key toggles between
	the upper and lower part of the result field.


How to perform an automatic test


Steps of the automatic test	Note
Select the FI/RCD function by means of the function selector switch.	
Set the sub-function to AUTO.	
Set the testing parameters.	
Connect the test cables to the test object (see figure 5.1	-
Press the "TEST" key to start the measurement.	Start of test
D Testing with $I_{\Delta}N$, 0° (step 1)	RCD should trip
Activating the RCD	
□ Testing with $I_{\Delta}N$, 180° (step 2)	RCD should trip
Activating the RCD	
□ Testing with 5×I _Δ N, 0° (step 3)	RCD should trip
Activating the RCD	
□ Testing with $5 \times I_{\Delta} N$, 180° (step 4)	RCD should trip
Activating the RCD	
□ Testing with $\frac{1}{2} \times I_{\Delta} N$, 0° (step 5)	RCD must not trip
□ Testing with $\frac{1}{2} \times I_{\Delta}N$, 180° (step 6)	RCD must not trip
 Tripping current test, 0° (step 7) 	RCD should trip
Activating the RCD	
□ Tripping current test, 180° (step 8)	RCD should trip
Activating the RCD	
Save the measuring result by pressing the "MEM" key	End of test

Example of the test steps:

(optional).

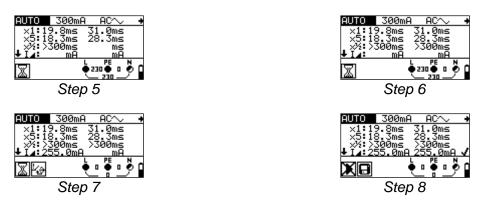


Figure 5.21: Test steps of the automatic test

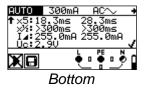
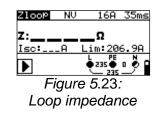


Figure 5.22: The "HELP" key toggles between the upper and the lower part of the result field.

Results displayed:

- **x1**step 1 tripping time ($I_{\Delta}=I_{\Delta N}$, 0°)
- **x1**step 2 tripping time ($I_{\Delta}=I_{\Delta N}$, 180°)
- **x5**step 3 tripping time (I_{Δ} =5× $I_{\Delta N}$, 0°)
- **x5**step 4 tripping time (I_{Δ} =5× $I_{\Delta N}$, 180°)
- **x**¹/₂step 5 tripping time ($I_{\Delta}=1/_2 \times I_{\Delta N}, 0^\circ$)
- **x**¹/₂step 6 tripping time ($I_{\Delta}=1/_2 \times I_{\Delta N}$, 180°)
- I₄.....step 8 tripping current (180°)
- Uccontact voltage for nominal value $I_{\Delta N}$

Notes:


- □ The automatic test will be stopped immediately, if any invalid condition is detected, e.g. exceedance of the maximum admissible contact voltage or a tripping time outside the admissible range.
- □ During the automatic testing of RCDs of the types A and F with nominal tripping differential currents of 300 mA, 500 mA and 1000 mA, the test of 5×I_ΔN will not be carried out. In this case, the test shall be passed, if all other test have been passed.
- □ The tripping current measurement (I₄, steps 7 and 8) is not carried out for selective RCDs.
- In the automatic test, the tripping time of RCDs of types B and B+ is measured with a sinusoidal testing current. The tripping current is measured with a smooth DC fault current.
- In the automatic test, the tripping time and tripping current for the AC part of RCDs of types EV and MI are measured with a sinusoidal testing current. The tripping current for the DC part is measured with a smooth DC fault current.

5.5 Loop impedance and prospective short-circuit current

The loop impedance is a complex AC current resistance within a fault loop (earth fault L-PE) consisting of current source, external conductor and protective conductor. The installation tester measures the impedance of the loop and calculates the short-circuit current. The measurement complies with the requirements specified in the EN 61557-3 standard.

Key function as described in chapter **4.2 Function selector switch**

Testing parameters

Test	Selects the loop impedance sub-function [Zloop, Zsrcd]
Testing current	Selects the testing current [Std, Low] (standard, low)
Fuse type	Selects the fuse type [, NV, gG, B, C, K, D, Z, L, U]
Nominal current	Nominal current of the fuse
Tripping time	Maximum tripping time of the fuse
Lim (limiting value)	Lower limit of the prospective short-circuit current

See Appendix A "Fuse table".

Connection plan

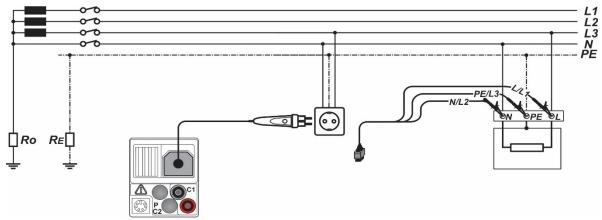


Figure 5.24: Connection of the optional "Commander" test plug (044149) and the three-wire test cable

How to perform loop impedance measurements

- Select the Z_{Loop} (L-PE) function by means of the function selector switch.
- Set the sub-function to Zloop or Zsrcd (for systems with RCDs).
- □ Set the testing parameters.
- □ Connect the test cables to the test object (see figure 5.24).
- Press the "TEST" key to start the measurement.
- □ Save the measuring result by pressing the "**MEM**" key (optional).

Figure 5.25: Example of a loop impedance measurement

Results displayed:

Z loop impedance Isc prospective short-circuit current Lim lower limit of the prospective short-circuit current

The prospective short-circuit current I_{SC} is calculated as follows:

$$I_{\rm SC} = \frac{Un \times k_{\rm SC}}{Z}$$

with:

Unnominal voltage L-PE (see table below),

ksc correction factor for short-circuit current lsc (see chapter 4.4.6 lsc factor (scaling factor))

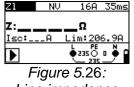
Un	Voltage range (L-PE)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-PE}} \le 134 \text{ V})$
	$(185 \text{ V} \le \text{U}_{L-\text{PE}} \le 266 \text{ V})$

Notes:

- □ High fluctuations of the nominal voltage might influence the measuring results (→ icon on the LC display). In this case, it is recommended to repeat the measurements and to check whether the measuring results are stable.
- The loop impedance measurement Zloop trips the residual current protection devices (RCDs).
- Select the Zsrcd measurement in order to prevent the tripping of a residual current protection device (RCD).
- The Zsrcd measurement normally does not trip the RCD. However, if a leakage current flows from L to PE, or if a very sensitive RCD is installed (e.g. EV type), the RCD may trip. In this case, setting the parameter "testing current" to "low" can be helpful.

5.6 Line impedance and prospective short-circuit current / voltage drop

The line impedance is a complex AC resistance within a current loop (short-circuit L-N or L-L) consisting of current source, external and neutral conductor (single-phase system) or between two external conductors (three-phase system).


The line impedance measurement complies with the requirements specified in the EN 61557-3 standard.

The "voltage drop" sub-function is intended to check whether a voltage in an electrical installation remains above an admissible value, if the maximum nominal current of the upstream fuse is flowing in the circuit. The limiting values are described in the EN 60364-5-52 standard.

Sub-functions:

- □ Zline line impedance measurement in compliance with EN 61557-3 and
- \Box ΔU voltage drop measurement

Key function as described in chapter **4.2 Function selector switch**

Line impedance

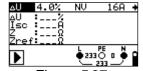


Figure 5.27*:* Voltage drop

Testing parameters

Test	Sub-functions [<mark>Zline</mark>], [Δ U]
Fuse type	Selects the fuse type [, NV, gG, B, C, K, D, Z, L, U]
Nominal current	Nominal current of the fuse
Tripping time	Maximum tripping time of the fuse
Lim (limiting value)	Lower limit of the prospective short-circuit current

See Appendix A "Fuse table".

Additional testing parameter for voltage drop measurement:

ΔU _{MAX}	Maximum voltage drop [3.0 % ÷ 9.0 %]
-------------------	--------------------------------------

5.6.1 Line impedance and prospective short-circuit current

Connection plan

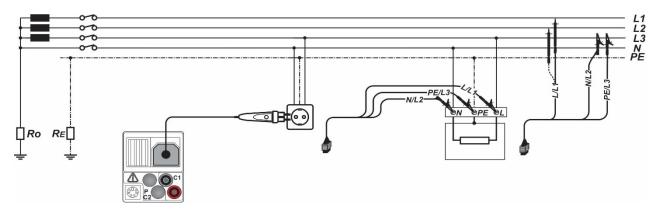


Figure 5.28: Connection of the optional "Commander" test plug (044149) and the three-wire test cable

How to perform line impedance measurements

- □ Select the Z_{LINE} (L-N/L) function by means of the function selector switch.
- □ Set the sub-function to Zline.
- □ Set the testing parameters.
- Connect the test cables to the test object (see figure 5.28).
- Press the "TEST" key to start the measurement.
- □ Save the measuring result by pressing the "**MEM**" key (optional).

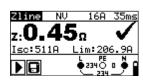


Figure 5.29: Example of a line impedance measurement

Results displayed:

Z line impedance Isc prospective short-circuit current Lim lower limit of the prospective short-circuit current

The prospective short-circuit current is calculated as follows:

$$I_{SC} = \frac{Un \times k_{SC}}{Z}$$

with:

Un nominal voltage L-N or L1-L2 (see table below), ksc correction factor for short-circuit current lsc (see chapter 4.4.6 lsc factor (scaling factor))

Un	Voltage range (L-N or L1-L2)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-N}} < 134 \text{ V})$
230 V	$(185 \text{ V} \le \text{U}_{\text{L-N}} \le 266 \text{ V})$
400 V	(321 V < U _{L-L} ≤ 485 V)

Note:

□ High fluctuations of the nominal voltage might influence the measuring results (→ icon on the LC display). In this case, it is recommended to repeat the measurements and to check whether the measuring results are stable.

5.6.2 Voltage drop

Voltage drop calculation is based on the difference between the line impedance at the measuring point (e.g. socket) and the line impedance at the reference point (e.g. distribution).

Connection plan

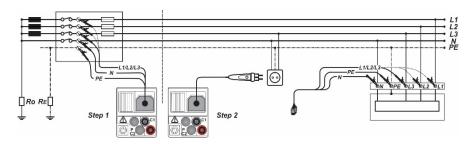
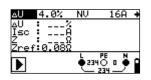
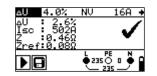


Figure 5.30: Connection of the optional "Commander" test plug (044149) and the three-wire test cable


How to perform voltage drop measurements

Step 1: Measuring the impedance Zref at the reference point


- □ Select the Z_{LINE} (L-N/L) function by means of the function selector switch.
- \Box Set the sub-function to ΔU .
- Set the testing parameters.
- □ Connect the test cables to the test object (see figure 5.30).
- Press the "CAL" key to start the measurement.

Step 2: Measuring the voltage drop at the measuring point

- \Box Set the sub-function to ΔU .
- □ Set the testing parameters (the fuse type has to be selected).
- Connect the test cables to the test object (see figure 5.30).
- □ Press the "TEST" key to start the measurement.
- □ Save the measuring result by pressing the "**MEM**" key (optional).

Step 1 - Zref

Step 2 - Voltage drop

Figure 5.31: Example of a voltage drop measurement

Results displayed:

ΔU voltage drop **Isc** prospective short-circuit current **Z** line impedance at the measuring point **Zref**..... line impedance at the reference point

The voltage drop is calculated as follows:

$$\Delta U[\%] = \frac{(Z - Z_{REF}) \cdot I_N}{U_N} \cdot 100$$

with:

 ΔU calculated voltage drop

Z line impedance at the measuring point

Z_{REF}...... line impedance at the reference point

 I_Nnominal current of the fuse

U_Nnominal voltage (see table below)

Un	Voltage range (L-N or L1-L2)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-N}} < 134 \text{ V})$
230 V	$(185 \text{ V} \le \text{U}_{L-N} \le 266 \text{ V})$
400 V	(321 V < U _{L-L} ≤ 485 V)

Notes:

- **□** If the reference impedance is not set, Z_{REF} is assumed to be 0.00 Ω.
- **□** The Z_{REF} value is deleted (set to 0.00 Ω) by pressing the "CAL" key, if the installation tester is not connected to a voltage source.
- □ The I_{SC} value is calculated as described in chapter 5.6.1 "Line impedance and prospective short-circuit current".
- \Box If the voltage measured is outside the listed voltage ranges, the ΔU value will not be calculated.
- □ High fluctuations of the nominal voltage might influence the measuring results (→ icon on the LC display). In this case, it is recommended to repeat the measurements and to check whether the measuring results are stable.

5.7 Earthing resistance

An adequate and reliably effective earth connection is an important prerequisite for the correct functioning and safety of electrical installations.

In combination with the optional earthing kit (044113), it is possible to perform earthing resistance measurements at main earthing systems, lightning arresters and local earth connections. The measurement complies with the EN 61557-5 standard.

Earthing resistance measurement is performed using the three-wire measuring method by means of two earth rods.

Testing parameters

Limiting	Maximum resistance [without limits (), 1 Ω ÷ 5 k Ω]
value	

How to perform earthing resistance measurements

- Select the R_E function by means of the function selector switch. The display shows EARTH RE.
- Set the limiting value (optional).
- □ Connect the test cables to the test object (see figure 5.33 and 5.34)
- □ Press the "**TEST**" key to start the measurement.
- □ Save the measuring result by pressing the "**MEM**" key (optional).

Connection plan

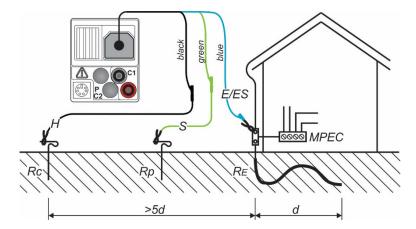


Figure 5.33: Connection of the optional earthing kit (044113) – Measurement of the main earthing system

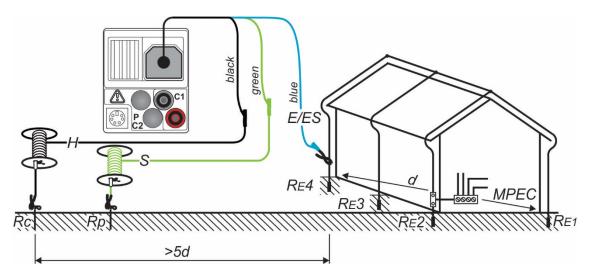


Figure 5.34: Connection of the optional earthing kit (044113) – Measurement at the lightning arrester

Figure 5.35: Example of an earthing resistance measurement

Results displayed:

R..... earthing resistance

- **Rp**..... resistance of the S probe, probe resistance (potential)
- Rc..... resistance of the H probe, auxiliary earth electrode resistance (current)

Notes:

- An excessive resistance of the S and H probes might influence the measuring results. In this case, the warnings "Rp" and "Rc" will be displayed. The results will not be evaluated with "PASS" / "FAIL".
- □ High parasitic currents and interference voltages might influence the measuring results. In this case, the tester displays the r_{V} warning.
- □ The probes must be positioned with sufficient distance from the test object. The distance between the earth connection (E/ES) and the probe (H) should be at least five times larger than the depth or length of the earth connection (see figures 5.33 and 5.34).

5.8 Testing the protective conductor connection (PE)

In case of new or modified installations, it might happen that the protective conductor (PE) and the external conductor L (phase) have been accidentally reversed. This is a very dangerous situation! For this reason, it is important to check whether a dangerous phase voltage is applied to the protective conductor connection.

The test of the protective conductor connection is performed automatically for the Zline (L-N/L), Zloop (L-PE) and RCD measuring functions by touching (> 1 second) the silver "TEST" key of the installation tester, of the "Commander" test probe or the optional "Commander" test plug (044149).

Examples of incorrect wiring of the protective conductor connection (PE)

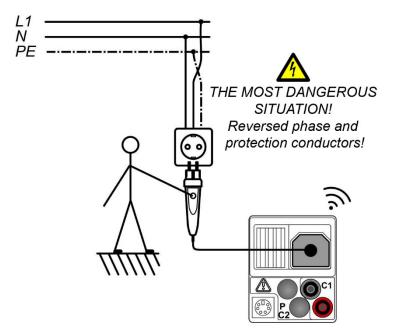


Figure 5.36: Reversed L and PE conductors – Phase voltage at the PE conductor is detected by touching the "TEST" key of the "Commander" test plug (optional).

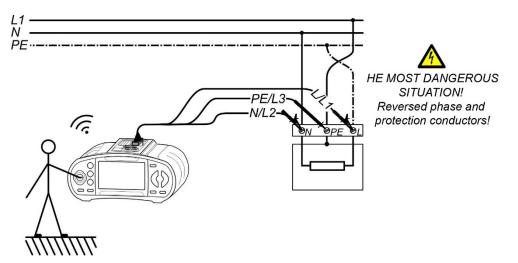


Figure 5.37: Reversed L and PE conductors – Phase voltage at the PE conductor is detected by touching the "TEST" key of the installation tester

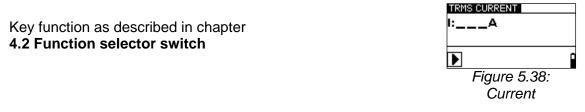
BENNING

Testing the protective conductor connection (PE)

- Select the Z_{LINE} (L-N/L), Z_{LOOP} (L-PE) or RCD function by means of the function selector switch.
- Connect the test cables to the test object (see figure 5.36 and 5.37).
- □ Touch the silver contact electrode of the "**TEST**" key for at least two seconds.
- If phase voltage is connected to the PE connection, the warning is shown on the LC display of the installation tester and the buzzer sounds. Further measurements in the Z_{loop} (L-PE) and RCD functions are blocked.

Warning:

□ If the phase voltage is detected at the protective conductor connection (PE), immediately stop all measurements and make sure that the fault will be eliminated.


Notes:

- The protective conductor connection can only be tested in the Z_{LINE} (L-N/L), Z_{LOOP} (L-PE) or RCD positions of the function selector switch.
- □ A phase voltage at the protective conductor will not be detected, if the operator's body is completely insulated from the floor or the walls!
- □ See Appendix C "Commander".

5.9 TRMS current by means of current clamp adapter

This function allows the measurement of load currents and leakage currents by means of the optional current clamp adapters BENNING CC 1 and BENNING CC 3 using the TRMS (TRUE RMS) measuring method. This measuring method guarantees correct measuring results even in case of non-sinusoidal signals.

Connection plan

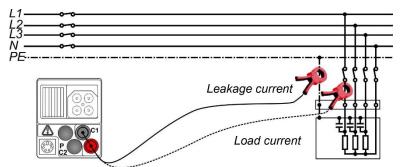


Figure 5.39: Connection of the optional current clamp adapter BENNING CC 1 or BENNING CC 3

How to perform current measurements

- Set the current clamp adapter as described in chapter 4.4.9 and connect it to measuring input C1.
 - □ Select the $A \cong$ function by means of the function selector switch. The display shows CURRENT.
 - Clamp the single-wire conductor by means of the current measuring clamp (see figure 5.39).
 - □ Press the "TEST" key to start the measurement.
 - Press the "**TEST**" key again to stop the measurement.
- □ Save the measuring result by pressing the "**MEM**" key (optional).

11: 1.56 A	NT
▶₿	

Figure 5.40: Example of a current measurement

Result displayed:

Icurrent

5.10 Single-fault leakage current (ISFL) in IT networks

The IT system is a power supply network which is insulated from the protective conductor. It is an ungrounded power supply network. Either the network is not connected to earth directly or it is connected to earth via a relatively high impedance. It is mainly used in areas requiring additional protection against electrical accidents. A typical area of application are medical operating rooms.

A first insulation fault between an external conductor and earth represents earthing of this conductor. In this case, there is neither a potential difference between conductive housings and earth nor an electric circuit to the transformer closed via earth.

The measurement of the single-fault leakage current is carried out in order to measure the maximum current which might flow from the tested line (external conductor) to the protective conductor. This current flows through the insulating resistance and the phase-to-earth capacities between the other lines (external conductors) and the protective conductor, if the single fault is applied as short-circuit between the tested line and PE.

Key function as described in chapter **4.2 Function selector switch**

Figure 5.41: Single-fault leakage current (ISFL)

Testing parameters

Limiting value Maximum single-fault leakage current [without limits (---), 3.0 mA ÷ 20.0 mA]

Connection plan

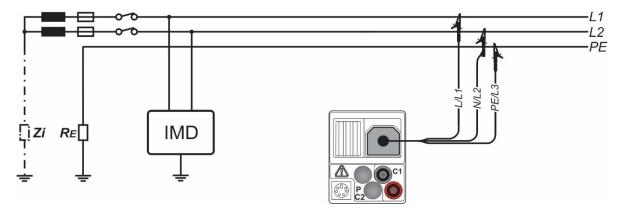


Figure 5.42: Connection of the three-wire test cable

BENNING

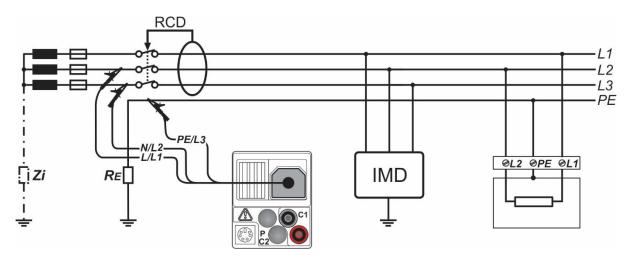
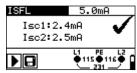



Figure 5.43: Connection of the three-wire test cable in RCD-protected installations

How to perform single-fault leakage current measurements

- Set the earthing system according to chapter 4.4.4 to the IT network type.
- □ Select the **R** iso function by means of the function selector switch.
- □ Set the sub-function to ISFL.
- Set the limiting value (optional).
- Connect the test cables to the test object (see figure 5.42 and 5.43).
- □ Press the "TEST" key to start the measurement.
- Save the measuring result by pressing the "MEM" key (optional).

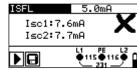


Figure 5.44: Examples of single-fault leakage current measurements

Results displayed:

- **Isc1**single-fault leakage current at single fault (earth fault) between L1 and protective conductor (PE)
- **Isc2**single-fault leakage current at single fault (earth fault) between L2 and protective conductor (PE)

5.11 Luminous intensity

Luminous intensity measurement can be used for the planning and installation of interior and exterior lighting systems. The optional BENNING luxmeter type B (044111) is connected to the RS232 interface.

Key function as described in chapter **4.2 Function selector switch**

SENSOR	3001u×
E:	_lux
▶	ပ္ံးစို့စစ္စ
Fig	ure 5.45:
Lumino	ous intensitv

Testing parameters

Limiting	Minimum illumination [without limits (), 0.1 lux ÷ 20 klux]
value	

Sensor positioning

Figure 5.46: Positioning of the luxmeter

How to perform luminous intensity measurements

- Select the LUX function by means of the function selector switch. The display shows SENSOR.
- □ Set the limiting value (optional).
- Connect the luxmeter to the PS/2 port of the installation tester.
- Switch the luxmeter on and position it underneath the light source (see figure 5.46).
- Press the "**TEST**" key to start the measurement.
- □ Save the measuring result by pressing the "**MEM**" key (optional).

Figure 5.47: Example of a luminous intensity measurement

Result displayed:

E luminous intensity

Notes:

- Shadows and irregular exposure to light might influence the measuring result!
- Artificial light sources reach their full capacity (see Technical Data of the light sources) only after a certain time and therefore should be switched on until they reach this capacity before carrying out measurements.

6 Management of measured values

6.1 Memory structure

After measurement, the measuring results including all relevant measuring parameters can be stored in the memory of the installation tester.

The memory of the installation tester is divided into four levels with each level offering 199 storage locations. The number of measurements which can be stored in one storage location is not limited.

The installation structure field describes the storage location of the measurement (which object, block, fuse and measuring point) and how it can be accessed.

The measuring result field provides information on the type and number of measurements belonging to the selected storage location (object, block, fuse and measuring point).

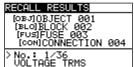


Figure 6.1: Installation structure field and measuring result field

The memory structure offers the following advantages

- □ The measuring results can be structured and stored corresponding to a typical electrical installation.
- The structure of the electrical system to be tested can be created by means of the logging software BENNING PC-Win IT 130-200 and can be transmitted to the BENNING IT 130 installation tester (upload of installation structures).
- Easy browsing through installation structures and corresponding measuring results
- Easy test reports and test protocols can be created by means of the logging software BENNING PC-Win IT 130-200 after the measuring results have been downloaded to a PC.

Memory menu
Installation structure field
1 st level:
OBJECT: Default name of the storage location
001: No. of the storage location
2 nd level:
BLOCK: Default name of the storage location
002: No. of the storage location
3 rd level:
FUSE: Default name of the storage location
003: No. of the storage location
4 th level:
CONNECTION (measuring point): Default name of the
storage location
004: No. of the storage location
Number of measurements stored in the selected storage
location
[number of measurements stored in the selected storage
location and in subordinate storage locations]
_

Installation structure field

Measuring result field

VOLTAGE TRMS	Type of measurement stored in the selected storage location
No.: 1/36	No. of the selected measurement / number of all
	measurements for each storage location
	measurements for each storage location

Example of a typical installation structure in the BENNING IT 130 installation tester:

[OBJ] OBJECT 001 [BLO] BLOCK 001 [FUS] FUSE 001 [CON] MEASURING POINT 001 No.: 1/3 R ISO

Example of a customer-specific installation structure in the BENNING IT 130 installation tester:

[OBJ] Customer Meyer [BLO] Distributor of ground floor [FUS] F1 kitchen [CON] Socket 1 No.: 1/3 R ISO

Note:

The customer-specific installation structure has been created by means of the BENNING PC-Win IT 130-200 logging software and then downloaded to the BENNING IT 130 installation tester. Once created, installation structures can be stored in the BENNING PC-Win IT 130-200 logging software and transmitted once again to the installation tester for periodic testing.

6.2 Saving measuring results

After measurement, the measuring results and the corresponding parameters can be saved (I icon appears on the LC display). Press the "**MEM**" key to enter the memory menu.

FREE: 96.3% Free memory capacity for saving measuring results

Keys used in the installation structure field:

ТАВ	Selects the storage location (object / block / fuse / measuring point)
UP / DOWN	Selects the no. of the selected storage location (1 to 199)
MEM	Saves the measuring results to the selected storage location
ESC / TEST /	Back / cancel without saving
function selector switch	

Notes:

- The installation tester automatically suggests the last selected storage location for saving a new measuring result.
- □ If you want to save the measuring result to the same storage location as the previous one, press the "**MEM**" key twice.

6.3 Recalling measuring results

Press the "**MEM**" key, if there is no measuring result for saving yet, or select "**MEMORY**", "**RECALL RESULTS**" in the "**SETTINGS**" menu.

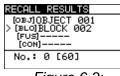


Figure 6.3: Recall memory menu – installation structure field selected

Recall memory menu – measuring result field selected

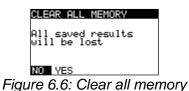
Keys used in the installation structure field:

ТАВ	Selects the storage location (object / block / fuse / measuring point)
UP / DOWN	Selects the no. of the selected storage location (1 to 199)
ESC / function selector switch	Back / cancel to the selected measuring function
TEST / MEM	Selects the corresponding measuring result field

Keys used in the measuring result field:

UP / DOWN	Selects the measurement stored
ESC / TAB	Back / cancel to the installation structure field
Function selector switch	Back / cancel to the selected measuring function
TEST / MEM	Recalls the selected measuring results

Figure 6.5: Recall of measuring results stored


Keys used in the measuring result field (measuring results are displayed)

UP / DOWN	Recalls measuring results stored in the selected storage location
MEM / ESC	Back / cancel to the measuring result field
TEST	Back / cancel to the installation structure field
Function selector switch	Back / cancel to the selected measuring function

6.4 Deleting measuring results

6.4.1 Deleting the entire measured value memory

Select the **SETTINGS** mode by means of the function selector switch. Select "**CLEAR ALL MEMORY**" in the "**MEMORY**" menu. The following warning will be displayed:

Keys used:

UP / DOWN	Toggles between NO and YES
TEST	Confirms deleting the entire measured value memory
ESC / function selector switch	Back / cancel to the "MEMORY" menu

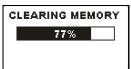


Figure 6.7: Deleting the measured value memory

6.4.2 Deleting all measurements of each storage location and subordinate storage locations

Select the **SETTINGS** mode by means of the function selector switch. Select "**DELETE RESULTS**" in the "**MEMORY**" menu.

DELETE RESULTS
[0ቌJ]0BJECT 001 [ቌ∟o]BLOCK 002
> [FUS]FUSE 003
[CON]
No.: 5 [51]

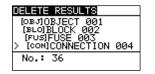


Figure 6.8: Deleting all measurements of each storage location and subordinate storage locations

Keys used in the installation structure field:

TAB	Selects the storage location (object / block / fuse / measuring point)
UP / DOWN	Selects the no. of the selected storage location (1 to 199)
Function selector switch	Back / cancel to the selected measuring function
ESC	Back / cancel to the "MEMORY" menu
TEST	Enters a dialog box for deleting all measurements of the selected storage location and its subordinate storage locations. Press the key again to delete all measurements of this storage location and its subordinate storage locations.

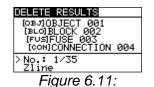
BENNING

6.4.3 Deleting an individual measurement

Select the **SETTINGS** mode by means of the function selector switch. Select "**DELETE RESULTS**" in the "**MEMORY**" menu.

Figure 6.9: Deleting an individual measurement (installation structure field selected)

Keys used in the installation structure field:


ТАВ	Selects the storage location (object / block / fuse / measuring point)
UP / DOWN	Selects the no. of the selected storage location (1 to 199)
Function selector switch	Back / cancel to the selected measuring function
ESC	Back / cancel to the "MEMORY" menu
MEM	Enters the measuring result field of individual measurements

Keys used in the measuring result field:

UP / DOWN	Selects an individual measurement
TEST	Enters a dialog box for deleting an individual measurement.
	Press the key again to delete the individual measurement.
TAB / ESC	Back / cancel to the installation structure field
Function selector switch	Back / cancel to the selected measuring function

Figure 6.10: Deleting an individual measurement

Display after the measurement has been deleted

6.5 Renaming installation structure fields

6.5.1 Renaming installation structure fields by means of the logging software BENNING PC-Win IT 130-200

The default installation structure field of the installation tester are "Object", "Block", "Fuse" and "Measuring point (CON)".

In the BENNING PC-Win IT 130-200 logging software, the default installation structure field can be renamed with customer-specific names and can be adapted to the installation to be tested. Once created, the installation structures can be stored in the logging software and transmitted to the BENNING IT 130 installation tester. Please refer to the help menu of the logging software for further information on how to transmit customer-specific installation structures to the installation tester.

RECALL RESULTS
[OBJ]APPARTMENT1
[BLO]MAIN-BOARD > [FUS]KITCHEN
No.: 72

Figure 6.12: Example of a customer-specific installation structure

6.5.2 Renaming the installation structure fields by means of the barcode scanner

The default installation structure field of the installation tester are "Object", "Block", "Fuse" and "Measuring point (CON)".

If the installation tester is in the "**SAVE RESULTS**" menu, the identification no. or the designation of the measuring point can be scanned by means of a barcode scanner.

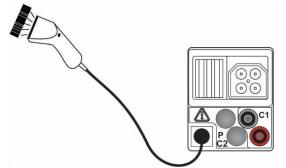


Figure 6.13: Connection of the optional barcode scanner (009371)

Renaming the storage location

- Connect the optional barcode scanner to the installation tester.
- □ Carry out the measurement, press the "MEM" key and select the storage location to be renamed in the "SAVE RESULTS" menu.
- Scan the identification no. or the designation of the measuring point from the barcode label in order to rename the installation structure field. The installation tester confirms the receipt by two short acoustic signals and displays the identification no. or the designation of the measuring point.

Note:

□ Please use barcode scanners only which have been approved by BENNING.

6.6 USB and RS232 interface

The installation tester is provided with the two communication interfaces USB and RS 232. The transmission mode is selected automatically by the installation tester depending on the interface used. Here, the USB interface is given priority.

The stored measuring results can be transmitted to a PC by means of the BENNING PC-Win IT 130-200 logging software. The PC software automatically recognizes the installation tester and thus allows data transmission between the installation tester and the PC.

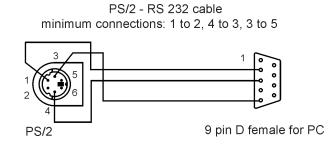


Figure 6.14: Pin assignment of the serial RS232 cable

How to set up a USB or RS232 connection

- RS232 interface: Connect the serial PS/2-RS232 interface cable to a COM port of the PC and to the PS/2 connector of the installation tester.
- USB interface: Connect the USB cable to a USB port of the PC and to the USB port of the installation tester.
- Switch on both the PC and the installation tester.
- Start the BENNING PC-Win IT 130-200 program.
- The PC and the installation tester automatically recognize each other.
- The installation tester is prepared for communication with a PC.

7 Logging software BENNING PC-Win IT 130-200

The logging software BENNING PC-Win IT 130-200 allows the comfortable management of the measurement data stored by the installation tester. The software is designed for an optimal use of the installation tester BENNING IT 200.

When using the BENNING IT 130 installation tester, the software has limited use and is reduced to functions supported by the BENNING IT 130.

Before installation check your system for the following requirements:

- □ Supported operating systems: Windows 10, 32 bit and 64 bit
- □ Installed system memory (RAM): at least 2 GB (4 GB recommended)
- □ Hard disk space:
 - At least 400 MB free space for the installation files and documentation.
 - An additional 280 MB (x86) or 610 MB (x64) of free disk space is required if Microsoft.NET Framework (4.0 or higher) is not installed.
 - Additional disk space (20 GB recommended) for data storage

The latest version of the logging software BENNING PC-Win IT 130-200 is available for free download on the product website of the BENNING IT 130. http://tms.benning.de/it130

To install the software, run the installation file Setup.exe after downloading. After selecting the language, the installation wizard guides you through the installation of the software.

To familiarise yourself with the logging software, use the included help function, which opens an operating manual for the protocol software in PDF format.

For a secure data exchange between the logging software and the installation tester BENNING IT 130, please use the enclosed USB interface cable.

8 Firmware update

To keep the installation tester up to date, the firmware can be updated from a PC via the USB interface cable included in the scope of delivery.

The latest version of the firmware is available for free download on the product website of the BENNING IT 130. http://tms.benning.de/it130

The update process is carried out via the update software FlashMe, which guides through the update process in English.

Note:

It is recommended to have the firmware updated by BENNING Service during calibration (see chapter 9.3 Calibration). Before calibration, the latest firmware is always installed on the installation tester.

9 Maintenance

Unauthorized persons are not allowed to open the installation tester. The installation tester does not contain any replaceable components except for the batteries / storage batteries and the fuse F1.

9.1 Fuse F1 replacement

Three fuses are located behind the rear cover of the installation tester. Only the fuse F1 can be replaced.

If one of the fuses F2 or F3 has blown, the device must not be used anymore. In this case, the device must be sent to BENNING for inspection and repair.

🗆 F1

M 0.315 A / 250 V, 20×5 mm (757211)

This fuse is intended to protect the internal switching circuits for low-impedance measurement / continuity test, if during measurement the test probes are accidentally connected to the mains voltage.

Please refer to chapter 3.3 "Rear panel" for information on the position of the fuse F1.

Warnings:

- Disconnect all test cables and switch off the installation tester before opening the battery / fuse compartment, as dangerous voltages are applied to the installation tester!
- Replace the defective fuse by original fuses only, because otherwise the installation tester or the accessories might get damaged and / or the operator's safety might be impaired!

9.2 Cleaning

The housing does not require any specific maintenance. Clean the surface of the installation tester or the accessories by means of a soft cloth slightly moistened with soap water or alcohol. After cleaning, let the installation tester or accessories dry completely before using them.

Warnings:

- Do not use any liquids based on benzine or hydrocarbons!
- Do not spill any cleaning liquids on the installation tester!

9.3 Calibration

Benning guarantees compliance with this technical and accuracy specifications stated in this operating manual for the first 12 months after the delivery date. To maintain accuracy of the measuring results, make sure that the device is recalibrated in annual intervals by the BENNING Service (chapter 9.4 Service & support).

As part of the calibration, the device is provided with the latest firmware update and thus always remains up to date.

http://calibration.benning.de

9.4 Service & support

Please contact your specialty retailer or the BENNING Service Center for any repair or service work that might be required.

Technical support

Please contact our Technical support for technical questions on handling the device. Phone: +49 2871 93-555 Fax: +49 2871 93-6555 E-mail: helpdesk@benning.de Internet: www.benning.de

Returns management

Easily and conveniently use the BENNING returns portal for a quick and smooth returns processing: https://www.benning.de/service-de/retourenabwicklung.html Phone: +49 2871 93-554 E-mail: returns@benning.de

Return address

BENNING Elektrotechnik und Elektronik GmbH & Co. KG Retourenmanagement Robert-Bosch-Str. 20 D - 46397 Bocholt

Additional product information can be found on our website. www.benning.de

9.5 Disposal and environmental protection

At the end of product life, dispose of the unserviceable device and the batteries via appropriate collecting facilities provided in your community.

10 Technical data

10.1 Insulating resistance

Insulating resistance (nominal voltages of 50 V_{DC}, 100 V_{DC} and 250 V_{DC}) Measuring range according to EN 61557-2: 0.15 M Ω ÷ 199.9 M Ω

Measuring range (M Ω)	Resolution (M Ω)	Accuracy
0.00 ÷ 19.99	0.01	\pm (5 % of the measured value + 3 digits)
20.0 ÷ 99.9	0.1	\pm (10 % of the measured value)
100.0 ÷ 199.9	0.1	\pm (20 % of the measured value)

Insulating resistance (nominal voltages of 500 V_{DC} and 1000 $V_{\text{DC}})$

Measuring range according to EN 61557-2: 0.15 M Ω ÷ 999 M Ω

Measuring range (MΩ)	Resolution (MΩ)	Accuracy
0.00 ÷ 19.99	0.01	\pm (5 % of the measured value + 3 digits)
20.0 ÷ 199.9	0.1	\pm (5 % of the measured value)
200 ÷ 999	1	\pm (10 % of the measured value)

Voltage

Measuring range (V)	Resolution (V)	Accuracy
0 ÷ 1200	1	\pm (3 % of the measured value + 3 digits)

The accuracy specified shall apply for the use of the three-wire test cable and shall apply up to 100 M Ω for the use of the "Commander" test probe.

The accuracy specified shall apply up to 100 M Ω for a relative air humidity > 85 %.

If the installation tester gets wet, the results might be affected. In this case, it is recommended to let the installation tester and its accessories dry for at least 24 hours.

The maximum error under operating conditions corresponds to the maximum error under reference conditions \pm 5 % of the measured value.

10.2 Low-impedance resistance / continuity test

10.2.1 Low-impedance resistance R LOW

Measuring range R (Ω)	Resolution (Ω)	Accuracy
0.00 ÷ 19.99	0.01	\pm (3 % of the measured value + 3 digits)
20.0 ÷ 199.9	0.1	1/5 % of the measured value)
200 ÷ 1999	1	\pm (5 % of the measured value)

Measuring range according to EN 61557-4: 0.16 Ω ÷ 1999 Ω

Measuring range R+, R- (Ω)	Resolution (Ω)	Accuracy
0.0 ÷ 199.9	0.1	(EQ) of the measured value (E digita)
200 ÷ 1999	1	\pm (5 % of the measured value + 5 digits)

10.2.2 Continuity test

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.0 ÷ 19.9	0.1	(E) of the measured value + 2 digite)
20 ÷ 1999	1	\pm (5 % of the measured value + 3 digits)

10.3 Residual current protection devices (RCDs)

10.3.1 General data

Nominal tripping differential current (A, AC) .. 10 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1000 mA Nominal tripping differential current (EV, MI). 30 mA AC, 6 mA DC

Accuracy	0 / +0,1·I Δ ; I Δ = I Δ N, 2×I Δ N, 5×I Δ N
	-0.1·I∆ / +0; I∆ = 0.5×I∆N
	AS / NZS: ± 5 %
Shape of testing current	. sinusoidal (type AC, type EV/MI [AC part]),
	. pulsating (type A, type F),
	. smooth direct current (type B, type B+,
	. type EV/MI [DC part]),
DC offset for pulsating testing current	. 6 mA (typical)
RCD type	. undelayed, delayed (S)
Initial polarity of the testing current	. 0º or 180º
Voltage range	. 93 V ÷ 134 V (45 Hz ÷ 65 Hz)
	185 V ÷ 266 V (45 Hz ÷ 65 Hz)

Current selection for RCD testing (r.m.s. value calculated for 20 ms) according to IEC 61009:

		$I_{\Delta N} \times 1$	/2		$I_{\Delta N} \times 1$			$I_{\Delta N} \times 2$			I _{AN} × S	5		RCD	I_{Δ}
I _{∆N} (mA)	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+
10	5	3,5	5	10	20	20	20	40	40	50	100	100	\checkmark	\checkmark	✓
30	15	10,5	15	30	42	60	60	84	120	150	212	300	\checkmark	\checkmark	 ✓
100	50	35	50	100	141	200	200	282	400	500	707	1000	\checkmark	\checkmark	<
300	150	105	150	300	424	600	600	848	-	1500	-	-	\checkmark	\checkmark	<
500	250	175	250	500	707	1000	1000	1410	-	2500	-	-	\checkmark	\checkmark	<
1000	500	350	500	1000	1410	-	2000	-	-	-	-	-	✓	\checkmark	-

"√"	. applicable
" <u>"</u>	
Туре АС	
Type A, type F	
	testing current is a smooth direct current

	I _{AN} × 1/2	$I_{\Delta N} \times 1$	$I_{\Delta N} \times 2$	I _{ΔN} × 5	RCI	DΙΔ
I _{∆N} (mA)		EV/MI	EV/MI	EV/MI	EV/MI	EV/MI
, , ,	(AC part)	(AC part)	(AC part)	(AC part)	(AC part)	(DC part)
30 AC	15	30	60	150	\checkmark	-
6 DC	-	6	-	-	-	✓

"-".....not applicable Type EV, MI (AC part) sinusoidal testing current Type EV, MI (DC part) testing current is a smooth direct current

10.3.2 Contact voltage (Uc)

Measuring range according to EN 61557-6: 20.0 V ÷ 31.0 V for limiting value of 25 V Measuring range according to EN 61557-6: 20.0 V ÷ 62.0 V for limiting value of 50 V

Measuring range (V)	Resolution (V)	Accuracy
0.0 ÷ 19.9	0.1	(-0 % / +15 %) of the measured value ± 10 digits
20.0 ÷ 99.9	0.1	(-0 % / +15 %) of the measured value

The specified accuracy shall apply for stable mains voltages and protective conductor connections without any interference voltages.

Testing current.....max. 0.5×I_{AN} Limiting value for contact voltage 25 V, 50 V

The specified accuracy shall apply to the entire measuring range.

10.3.3 Tripping time (RCD t)

The entire measuring range complies with the requirements specified in the EN 61557-6 standard.

Measuring range*	Resolution (ms)	Accuracy
0.0 ÷ 999.9 ms	0.1	±3 ms
1.0 ÷ 10.0 s	10	±10 ms

* The maximum measuring duration depends on the RCD testing standard selected (see chapter 4.4.5 RCD testing).

Testing current...... $\frac{1}{2} \times I_{\Delta N}$, $I_{\Delta N}$, $2 \times I_{\Delta N}$, $5 \times I_{\Delta N}$

 $5 \times I_{\Delta N}$ is not available for $I_{\Delta N}$ =1000 mA (RCD type AC) or $I_{\Delta N} \ge 300$ mA (RCD type A, type F).

 $2 \times I_{\Delta N}$ is not available for $I_{\Delta N}$ =1000 mA (RCD type A, type F).

The specified accuracy shall apply to the entire measuring range.

10.3.4 Tripping current (RCD I)

Tripping current

Norm **EN 60364-4-41**, (SETTINGS: \rightarrow RCD TESTING):

The entire measuring range complies with the requirements specified in the EN 61557-6 standard.

Measuring range I _∆	Resolution I _A	Accuracy
$0.1 \times I_{\Delta N} \div 1.1 \times I_{\Delta N}$ (type AC, EV/MI AC part)	0.05×Ι _{ΔΝ}	$\pm 0.1 \times I_{\Delta N}$
0.1×I _{∆N} ÷ 1.5×I _{∆N} (type A, F, I _{∆N} ≥30 mA)	0.05×Ι _{ΔΝ}	$\pm 0.1 \times I_{\Delta N}$
0.1×I _{∆N} ÷ 2.2×I _{∆N} (type A, F, I _{∆N} <30 mA)	0.05×I∆N	$\pm 0.1 \times I_{\Delta N}$
$0.1 \times I_{\Delta N}$ ÷ 2.2× $I_{\Delta N}$ (type B, MI DC part)	0.05×I∆N	$\pm 0.1 \times I_{\Delta N}$
$0.1 \times I_{\Delta N} \div 1.0 \times I_{\Delta N}$ (type EV DC part)	0.05×I∆N	$\pm 0.1 \times I_{\Delta N}$

Norm **EN 61008/EN 61009**, (SETTINGS: \rightarrow RCD TESTING):

The entire measuring range complies with the requirements specified in the EN 61557-6 standard.

Measuring range I _∆	Resolution I _∆	Accuracy
$0.2 \times I_{\Delta N} \div 1.1 \times I_{\Delta N}$ (type AC, EV/MI AC part)	0.05×I _{∆N}	$\pm 0.1 \times I_{\Delta N}$
0.2×I _{∆N} ÷ 1.5×I _{∆N} (type A, F, I _{∆N} ≥30 mA)	0.05×I∆N	$\pm 0.1 \times I_{\Delta N}$
$0.2 \times I_{\Delta N} \div 2.2 \times I_{\Delta N}$ (type A, F, $I_{\Delta N} < 30$ mA)	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$
$0.2 \times I_{\Delta N} \div 2.2 \times I_{\Delta N}$ (type B, B+, MI DC part)	0.05×I∆N	$\pm 0.1 \times I_{\Delta N}$
$0.2 \times I_{\Delta N} \div 1.0 \times I_{\Delta N}$ (type EV DC part)	0.05×I _{∆N}	$\pm 0.1 \times I_{\Delta N}$

Tripping time

Measuring range	Resolution (ms)	Accuracy
0 ÷ 999.9 ms	0.1	±3 ms
1.0 ÷ 10.0 s	10	±10 ms

Contact voltage

Measuring range (V)	Resolution (V)	Accuracy
0.0 ÷ 19.9	0.1	(-0 % / +15 %) of the measured value ± 10 digits
20.0 ÷ 99.9	0.1	(-0 % / +15 %) of the measured value

The specified accuracy shall apply for stable mains voltages and protective conductor connections without any interference voltages.

Tripping current measurement is not available for $I_{\Delta N}$ =1000 mA (RCD type B, type B+). The specified accuracy shall apply to the entire measuring range.

Tripping current limits

RCD type	Tripping current		
	Lower limit Upper limit		r limit
		I _{∆N} < 30 mA	I _{∆N} ≥ 30 mA
AC (sinusoidal)	$0.5 \times I_{\Delta N}$	Ι _Δ	N
A, F (pulsating)	$0.35 \times I_{\Delta N}$	$2 \times I_{\Delta N}$	$1.4 \times I_{\Delta N}$
B, B+, MI (DC)	$0.5 \times I_{\Delta N}$	2 ×	$I_{\Delta N}$
EV (DC)	$0.1 \times I_{\Delta N}$	6 n	nA

Note:

If the EN 60364-4-41 standard has been selected (SETTINGS: \rightarrow RCD testing), a tripping current of

less than the lower limit will be displayed without any evaluation (\bigstar / \checkmark).

10.4 Loop impedance and prospective short-circuit current

10.4.1 Zs function (for systems without RCD)

Loop impedance

Measuring range according to EN 61557-3: 0.25 $\Omega \div$ 9.99 k Ω

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 ÷ 9.99	0.01	\pm (E %) of the measured value \pm E digite)
10.0 ÷ 99.9	0.1	\pm (5 % of the measured value + 5 digits)
100 ÷ 999	1	10.0% of the measured value
1.00 k ÷ 9.99 k	10	± 10 % of the measured value

Prospective short-circuit current (calculated value)

Measuring range (A)	Resolution (A)	Accuracy
0.00 ÷ 9.99	0.01	
10.0 ÷ 99.9	0.1	
100 ÷ 999	1	Please observe the accuracy of the loop resistance measurement.
1.00 k ÷ 9.99 k	10	
10.0 k ÷ 23.0 k	100	

The accuracy specified shall apply provided that the mains voltage is stable during measurement.

10.4.2 Zsrcd function (for systems with RCD)

Loop impedance

Measuring range according to EN 61557-3: 0.46 $\Omega \div$ 9.99 k Ω

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 ÷ 9.99	0.01	\pm (5 % of the measured value + 10
10.0 ÷ 99.9	0.1	digits)
100 ÷ 999	1	10.0% of the measured value
1.00 k ÷ 9.99 k	10	\pm ±10 % of the measured value

Accuracy might be impaired due to interference voltages in the mains voltage.

Prospective short-circuit current (calculated value)

Measuring range (A)	Resolution (A)	Accuracy
0.00 ÷ 9.99	0.01	
10.0 ÷ 99.9	0.1	
100 ÷ 999	1	 Please observe the accuracy of the loop impedance measurement.
1.00 k ÷ 9.99 k	10	
10.0 k ÷ 23.0 k	100	

185 V ÷ 266 V (45 Hz ÷ 65 Hz)

No tripping of the residual current protection device (RCD).

10.5 Line impedance and prospective short-circuit current / voltage drop

Line impedance

Measuring range according to EN 61557-3: 0.25 Ω ÷ 9.99 k Ω

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 ÷ 9.99	0.01	\pm (5 % of the measured value + 5
10.0 ÷ 99.9	0.1	digits)
100 ÷ 999	1	10.0% of the measured value
1.00 k ÷ 9.99 k	10	\pm ±10 % of the measured value

Prospective short-circuit current (calculated value)

Measuring range (A)	Resolution (A)	Accuracy
0.00 ÷ 0.99	0.01	
1.0 ÷ 99.9	0.1	
100 ÷ 999	1	 Please observe the accuracy of the line impedance measurement.
1.00 k ÷ 99.99 k	10	
100 k ÷ 199 k	1000	

Voltage drop (calculated value)

Measuring range (%)	Resolution (%)	Accuracy
0.0 ÷ 99.9	0.1	Please observe the accuracy of the line impedance measurement*.

 Z_{REF} measuring range 0.00 $\Omega \div 20.0 \Omega$

* Please refer to chapter 5.6.2 Voltage drop for information on how to calculate the voltage drop.

10.6 Earthing resistance

Measuring range according to EN61557-5: 2,00 Ω ÷ 1999 Ω

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 ÷ 19.99	0.01	
20.0 ÷ 199.9	0.1	\pm (5 % of the measured value + 5 digits)
200 ÷ 9999	1	

Automatic measurement of auxiliary earth electrode resistance and probe resistance. Automatic monitoring of interference voltage.

10.7 TRMS voltage, frequency and phase sequence

10.7.1 TRMS voltage (AC/DC)

Measuring range (V)	Resolution (V)	Accuracy
0 ÷ 550	1	\pm (2 % of the measured value + 2 digits)

Measuring method true r.m.s. value (TRMS) Frequency range 0 Hz, 14 Hz ÷ 500 Hz

10.7.2 Voltage of the connection monitor

Measuring range (V)	Resolution (V)	Accuracy
10 ÷ 550	1	\pm (2 % of the measured value + 2 digits)

10.7.3 Frequency

Measuring range (Hz)	Resolution (Hz)	Accuracy
0.00 ÷ 9.99	0.01	(0.0.0) of the measured value (1.digit)
10.0 ÷ 499.9	0.1	$-\pm(0.2$ % of the measured value + 1 digit)

Voltage range 10 V ÷ 550 V

10.7.4 Phase sequence (rotary field)

Voltage range	100 $V_{AC} \div 550 V_{AC}$
Frequency range	14 Hz ÷ 500 Hz
Result displayed	1.2.3 or 3.2.1

10.8 TRMS current (AC / DC) via current clamp adapter

Measuring input C1 of the installation test	ster:
Maximum voltage	3 V
-	0 Hz, 40 Hz ÷ 500 Hz

AC current clamp adapter BENNING CC 1 (044037)

Measuring range (A)	Resolution (A)	Accuracy*
0.00 ÷ 0.99	0.01	indicative
1.00 ÷ 19.99	0.01	\pm (3 % of the measured value + 0.5 A)
20.0 ÷ 349.9	0.1	\pm (3 % of the measured value + 0.5 A)
350.0 ÷ 399.9	0.1	\pm (5 % of the measured value + 1 A)

AC / DC current clamp adapter BENNING CC 3 (044038)

Measuring range (A)	Resolution (A)	Accuracy*
0.00 ÷ 1.99	0.01	\pm (3 % of the measured value + 0.2 A)
2.00 ÷ 19.99	0.01	\pm (3 % of the measured value + 0.3 A)
20.0 ÷ 39.9	0.1	\pm (3 % of the measured value + 0.5 A)

Range = 300 A Output signal1 mV AC/DC per 1 A AC/DC

Measuring range (A)	Resolution (A)	Accuracy*
0.00 ÷ 19.99	0.01	indiaativa
20.0 ÷ 39.9	0.1	indicative
40.0 ÷ 199.9	0.1	\pm (4 % of the measured value + 1 A)
200.0 ÷ 299.9	0.1	\pm (4 % of the measured value + 2 A)

* The specified accuracy shall apply to the BENNING IT 130 installation tester and the BENNING current clamp adapters used.

10.9 Single-fault leakage current (ISFL) in IT networks

Measuring range (mA)	Resolution (mA)	Accuracy
0.0 ÷ 19.9	0.1	\pm (5 % of the measured value + 3 digits)

10.10Luminous intensity

The specified accuracy shall apply to the entire measuring range and for the use of the BENNING luxmeter type B (044111).

Measuring range (lux)	Resolution (lux)	Accuracy
0.01 ÷ 19.99	0.01	\pm (5 % of the measured value + 2 digits)
20.0 ÷ 199.9	0.1	
200 ÷ 1999	1	\pm (5 % of the measured value)
2.00 ÷ 19.99 k	10	

Measuring principle	. silicon photodiode with V(λ) filter
Spectral response error	
Cosine error	$. < 2.5$ % up to an angle of incidence of $\pm 85^{\circ}$
	. corresponds to DIN 5032, class B standard

10.11 General data

Power supply voltage Operating time Input voltage of charging jack Input current of charging jack Storage battery charging current Measuring category	12 V ± 10 % max. 400 mA 250 mA (internally regulated)
Protection class Contamination level Protection category	double insulation 2
Display	. matrix display with 128 x 64 pixels and background lighting
Dimensions (w \times h \times d) Weight	23 cm \times 10.3 cm \times 11.5 cm 1.3 kg, without batteries / storage batteries
Reference conditions: Temperature range Air humidity range	+10 °C ÷ +30 °C 40 % rel. Air humidity ÷ 70 % rel. air humidity
Operating conditions: Temperature range Maximum relative air humidity	0 °C ÷ +40 °C 95 % rel. air humidity (0 °C ÷ 40 °C), non-condensing
Storage conditions: Temperature range Maximum relative air humidity	10 °C ÷ +70 °C 90 % rel. air humidity (-10 °C ÷ +40 °C) 80 % rel. air humidity (40 °C ÷ 60 °C)
Transmission speed (baud rate): RS232 interface USB interface	
Memory size	. up to 1800 measurements

The specified accuracy shall apply to the first year of use under reference conditions. If not specified otherwise for the respective measuring function, an additional error of max. + 1 % of the measured value + 1 digit has to be considered for the use under operating conditions.

Appendix A Fuse table – Prospective short-circuit current

A.1 Fuse, type NV

NH: low-voltage high-breaking-capacity fuse

Nominal current	Disconnection tir	ne [ms]		
[A]	35	40	70	100
	Minimum prospe	ctive short-circuit	current [A]	
2	32.5	31.8	27.1	22.3
4	65.6	64.2	55.3	46.4
6	102.8	100.3	85.2	70.0
8	140.0	136.4	114.2	92.0
10	165.8	162.0	138.7	115.3
12	190.0	186.0	161.5	137.0
16	206.9	202.6	176.7	150.8
20	276.8	271.3	237.8	204.2
25	361.3	353.4	305.5	257.5
35	618.1	605.5	529.4	453.2
50	919.2	897.8	768.9	640.0
63	1 217.2	1 186.8	1 004.3	821.7
80	1 567.2	1 533.9	1 333.5	1 133.1
100	2 075.3	2 025.6	1 727.3	1 429.0
125	2 826.3	2 763.2	2 384.6	2 006.0
160	3 538.2	3 457.2	2 971.2	2 485.1
200	4 555.5	4 473.5	3 981.0	3 488.5
224	5 500.0	5 384.7	4 692.4	4 000.0
250	6 032.4	5 906.8	5 153.2	4 399.6
315	7 766.8	7 636.1	6 851.4	6 066.6
400	10 577.7	10 374.0	9 151.6	7 929.1
500	13 619.0	13 412.5	12 173.0	10 933.5
630	19 619.3	19 190.0	16 613.7	14 037.4
710	19712.3	19 562.7	18 664.8	17 766.9
800	25 260.3	24 860.3	22 460.1	20 059.8
1 000	34 402.1	33 567.8	28 561.7	23 555.5
1 250	45 555.1	44 831.9	40 492.3	36 152.6

Nominal current	Disconnection til	me [s]		
[A]	0.2	0.4	1	5
	Minimum prospe	ctive short-circuit	current [A]	·
2	18.7	15.9	13	9.1
4	38.8	31.9	26	18.7
6	56.5	46.4	38	26.7
8	73.0	60.0	47	33.0
10	96.5	80.7	70	46.4
12	114.0	88.0	80	50.0
16	126.1	107.4	90	66.3
20	170.8	145.5	120	86.7
25	215.4	180.2	148	109.3
35	374.0	308.7	240	169.5
50	545.0	464.2	380	266.9
63	663.3	545.0	440	319.1
80	964.9	836.5	670	447.9
100	1 195.4	1 018.0	830	585.4
125	1 708.3	1 454.8	1 180	765.1
160	2 042.1	1 678.1	1 380	947.9
200	2 970.8	2 529.9	2 050	1 354.5
224	3 300.0	2 700.0	2 150	1 500.0
250	3 615.3	2 918.2	2 300	1 590.6
315	4 985.1	4 096.4	3 300	2 272.9
400	6 632.9	5 450.5	4 300	2 766.1
500	8 825.4	7 515.7	5 750	3 952.7
630	11 534.9	9 310.9	7 400	4 985.1
710	14 341.3	11 996.9	8 760	6 423.2
800	16 192.1	13 545.1	10 800	7 252.1
1 000	19 356.3	16 192.1	13 000	9 1 4 6.2
1 250	29 182.1	24 411.6	19 500	13 070.1

A.2 Fuse, utilization category gG

gG: general-purpose fuse for general applications, mainly for cable and line protection

Nominal current	Disconnection tir	Disconnection time [ms]									
[A]	35	40	70	100							
	Minimum prospe	ctive short-circuit	current [A]								
2	32.5	31.8	27.1	22.3							
4	65.6	64.2	55.3	46.4							
6	102.8	100.3	85.2	70.0							
8	140.0	136.4	114.2	92.0							
10	165.8	162.0	138.7	115.3							
12	190.0	186.0	161.5	137.0							
16	206.9	202.6	176.7	150.8							
20	276.8	271.3	237.8	204.2							
25	361.3	353.4	305.5	257.5							
35	618.1	605.5	529.4	453.2							
50	919.2	897.8	768.9	640.0							
63	1 217.2	1 186.8	1 004.3	821.7							
80	1 567.2	1 533.9	1 333.5	1 133.1							
100	2 075.3	2 025.6	1 727.3	1 429.0							
125	2 826.3	2 763.2	2 384.6	2 006.0							
160	3 538.2	3 457.2	2 971.2	2 485.1							
200	4 555.5	4 473.5	3 981.0	3 488.5							
224	5 500.0	5 384.7	4 692.4	4 000.0							
250	6 032.4	5 906.8	5 153.2	4 399.6							
315	7 766.8	7 636.1	6 851.4	6 066.6							
400	10 577.7	10 374.0	9 151.6	7 929.1							
500	13 619.0	13 412.5	12 173.0	10 933.5							
630	19 619.3	19 190.0	16 613.7	14 037.4							
710	19712.3	19 562.7	18 664.8	17 766.9							
800	25 260.3	24 860.3	22 460.1	20 059.8							
1 000	34 402.1	33 567.8	28 561.7	23 555.5							
1 250	45 555.1	44 831.9	40 492.3	36 152.6							

Nominal current	Disconnection til	me [s]		
[A]	0.2	0.4	1	5
	Minimum prospe	ctive short-circuit	current [A]	·
2	18.7	15.9	13	9.1
4	38.8	31.9	26	18.7
6	56.5	46.4	38	26.7
8	73.0	60.0	47	33.0
10	96.5	80.7	70	46.4
12	114.0	88.0	80	50.0
16	126.1	107.4	90	66.3
20	170.8	145.5	120	86.7
25	215.4	180.2	148	109.3
35	374.0	308.7	240	169.5
50	545.0	464.2	380	266.9
63	663.3	545.0	440	319.1
80	964.9	836.5	670	447.9
100	1 195.4	1 018.0	830	585.4
125	1 708.3	1 454.8	1 180	765.1
160	2 042.1	1 678.1	1 380	947.9
200	2 970.8	2 529.9	2 050	1 354.5
224	3 300.0	2 700.0	2 150	1 500.0
250	3 615.3	2 918.2	2 300	1 590.6
315	4 985.1	4 096.4	3 300	2 272.9
400	6 632.9	5 450.5	4 300	2 766.1
500	8 825.4	7 515.7	5 750	3 952.7
630	11 534.9	9 310.9	7 400	4 985.1
710	14 341.3	11 996.9	8 760	6 423.2
800	16 192.1	13 545.1	10 800	7 252.1
1 000	19 356.3	16 192.1	13 000	9 1 4 6.2
1 250	29 182.1	24 411.6	19 500	13 070.1

A.3 Line safety switch, tripping characteristic B

Nominal	Disconnection time [s]										
current [A]	0.035	0.04	0.07	0.1	0.2	0.4	1	5			
	Minimum prospective short-circuit current [A]										
1.6	8	8	8	8	8	8	8	8			
2.0	10	10	10	10	10	10	10	10			
4.0	20	20	20	20	20	20	20	20			
6.0	30	30	30	30	30	30	30	30			
8.0	40	40	40	40	40	40	40	40			
10.0	50	50	50	50	50	50	50	50			
13.0	65	65	65	65	65	65	65	65			
15.0	75	75	75	75	75	75	75	75			
16.0	80	80	80	80	80	80	80	80			
20.0	100	100	100	100	100	100	100	100			
25.0	125	125	125	125	125	125	125	125			
32.0	160	160	160	160	160	160	160	160			
40.0	200	200	200	200	200	200	200	200			
50.0	250	250	250	250	250	250	250	250			
63.0	315	315	315	315	315	315	315	315			
80.0	400	400	400	400	400	400	400	400			
100.0	500	500	500	500	500	500	500	500			
125.0	625	625	625	625	625	625	625	625			

Range of instantaneous tripping: $3 - 5 \times I_N$

A.4 Line safety switch, tripping characteristic C

Range of instantaneous tripping: $5 - 10 \times I_N$

Nominal	Disconnection time [s]										
current [A]	0.035	0.04	0.07	0.1	0.2	0.4	1	5			
	Minimum prospective short-circuit current [A]										
0.5	5	5	5	5	5	5	5	2.7			
1.0	10	10	10	10	10	10	10	5.4			
1.6	16	16	16	16	16	16	16	8.6			
2.0	20	20	20	20	20	20	20	10.8			
4.0	40	40	40	40	40	40	40	21.6			
6.0	60	60	60	60	60	60	60	32.4			
8.0	80	80	80	80	80	80	80	43.2			
10.0	100	100	100	100	100	100	100	54.0			
13.0	130	130	130	130	130	130	130	70.2			
15.0	150	150	150	150	150	150	150	83.0			
16.0	160	160	160	160	160	160	160	86.4			
20.0	200	200	200	200	200	200	200	108.0			
25.0	250	250	250	250	250	250	250	135.0			
32.0	320	320	320	320	320	320	320	172.8			
40.0	400	400	400	400	400	400	400	216.0			
50.0	500	500	500	500	500	500	500	270.0			
63.0	630	630	630	630	630	630	630	340.2			
80.0	800	800	800	800	800	800	800	432.0			
100.0	1 000	1 000	1 000	1 000	1 000	1 000	1 000	540.0			
125.0	1 250	1 250	1 250	1 250	1 250	1 250	1 250	675.0			

A.5 Line safety switch, tripping characteristic K

Nominal	Disconne	ection time	[s]							
current	0.035	0.04	0.07	0.1	0.2	0.4	1	5		
[A]	Minimum prospective short-circuit current [A]									
0.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.0		
1.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	14.0		
1.6	24.0	24.0	24.0	24.0	24.0	24.0	24.0	22.4		
2.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	28.0		
4.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	56.0		
6.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	84.0		
10.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	140.0		
13.0	195.0	195.0	195.0	195.0	195.0	195.0	195.0	182.0		
15.0	225.0	225.0	225.0	225.0	225.0	225.0	225.0	210.0		
16.0	240.0	240.0	240.0	240.0	240.0	240.0	240.0	224.0		
20.0	300.0	300.0	300.0	300.0	300.0	300.0	300.0	280.0		
25.0	375.0	375.0	375.0	375.0	375.0	375.0	375.0	350.0		
32.0	480.0	480.0	480.0	480.0	480.0	480.0	480.0	448.0		
40.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	460.0		
50.0	750.0	750.0	750.0	750.0	750.0	750.0	750.0	700.0		
63.0	945.0	945.0	945.0	945.0	945.0	945.0	945.0	882.0		
80.0	1 200.0	1 200.0	1 200.0	1 200.0	1 2000	1 200.0	1 200.0	1 1 2 0.0		
100.0	1 500.0	1 500.0	1 500.0	1 500.0	1 500.0	1 500.0	1 500.0	1 400.0		
125.0	1 875.0	1 875.0	1 875.0	1 875.0	1 875.0	1 875.0	1 875.0	1 750.0		

Range of instantaneous tripping: $8 - 14 \times I_N$

A.6 Line safety switch, tripping characteristic D

Range of instantaneous tripping: $10 - 20 \text{ x I}_N$

Nominal	Disconnection time [s]										
current [A]	0.035	0.04	0.07	0.1	0.2	0.4	1	5			
	Minimum prospective short-circuit current [A]										
0.5	10	10	10	10	10	10	6.5	2.7			
1.0	20	20	20	20	20	20	13.0	5.4			
1.6	32	32	32	32	32	32	20.8	8.6			
2.0	40	40	40	40	40	40	26.0	10.8			
4.0	80	80	80	80	80	80	52.0	21.6			
6.0	120	120	120	120	120	120	78.0	32.4			
8.0	160	160	160	160	160	160	104.0	43.2			
10.0	200	200	200	200	200	200	130.0	54.0			
13.0	260	260	260	260	260	260	169.0	70.2			
15.0	300	300	300	300	300	300	195.0	81.0			
16.0	320	320	320	320	320	320	208.0	86.4			
20.0	400	400	400	400	400	400	260.0	108.0			
25.0	500	500	500	500	500	500	325.0	135.0			
32.0	640	640	640	640	640	640	416.0	172.8			
40.0	800	800	800	800	800	800	520.0	216.0			
50.0	1 000	1 000	1 000	1 000	1 000	1 000	650.0	270.0			
63.0	1 260	1 260	1 260	1 260	1 260	1 260	819.0	340.2			
80.0	1 600	1 600	1 600	1 600	1 600	1 600	1 040.0	432.0			
100.0	2 000	2 000	2 000	2 000	2 000	2 000	1 300.0	540.0			
125.0	2 500	2 500	2 500	2 500	2 500	2 500	1 625.0	675.0			

A.7 Line safety switch, tripping characteristic Z

Nominal	Disconne	ection time	e [s]								
current [A]	0.035	0.04	0.07	0.1	0.2	0.4	1	5			
	Minimum prospective short-circuit current [A]										
3	9	9	9	9	9	9	9	9			
4	12	12	12	12	12	12	12	12			
6	18	18	18	18	18	18	18	18			
8	24	24	24	24	24	24	24	24			
10	30	30	30	30	30	30	30	30			
13	39	39	39	39	39	39	39	39			
15	45	45	45	45	45	45	45	45			
16	48	48	48	48	48	48	48	48			
20	60	60	60	60	60	60	60	60			
25	75	75	75	75	75	75	75	75			
32	96	96	96	96	96	96	96	96			
40	120	120	120	120	120	120	120	120			
50	150	150	150	150	150	150	150	150			
63	189	189	189	189	189	189	189	189			
80	240	240	240	240	240	240	240	240			
100	300	300	300	300	300	300	300	300			
125	375	375	375	375	375	375	375	375			

Range of instantaneous tripping: $2 - 3 \times I_N$

A.8 Line safety switch, tripping characteristic L

Range of instantaneous tripping: 3.5 – 5 x I_{N}

Nominal	Disconne	Disconnection time [s]							
current [A]	0.035	0.04	0.07	0.1	0.2	0.4	1	5	
	Minimum	prospect	ive short-	circuit cur	rent [A]				
1.6	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	
2.0	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	
4.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	
6.0	31.5	31.5	31.5	31.5	31.5	31.5	31.5	31.5	
10.0	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	
12.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	
13.0	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	
15.0	78.8	78.8	78.8	78.8	78.8	78.8	78.8	78.8	
16.0	84.0	84.0	84.0	84.0	84.0	84.0	84.0	84.0	
20.0	105.0	105.0	105.0	105.0	105.0	105.0	105.0	105.0	
25.0	131.3	131.3	131.3	131.3	131.3	131.3	131.3	131.3	
32.0	168.0	168.0	168.0	168.0	168.0	168.0	168.0	168.0	
40.0	210.0	210.0	210.0	210.0	210.0	210.0	210.0	210.0	
50.0	262.5	262.5	262.5	262.5	262.5	262.5	262.5	262.5	
63.0	330.8	330.8	330.8	330.8	330.8	330.8	330.8	330.8	

A.9 Line safety switch, tripping characteristic U

Nominal	Disconne	ection time	e [s]									
current [A]	0.035	0.04	0.07	0.1	0.2	0.4	1	5				
	Minimum	Minimum prospective short-circuit current [A]										
1.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	9.0				
1.6	19.2	19.2	19.2	19.2	19.2	19.2	19.2	14.4				
2.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	18.0				
4.0	48.0	48.0	48.0	48.0	48.0	48.0	48.0	36.0				
6.0	72.0	72.0	72.0	72.0	72.0	72.0	72.0	54.0				
10.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	90.0				
12.0	144.0	144.0	144.0	144.0	144.0	144.0	144.0	108.0				
13.0	156.0	156.0	156.0	156.0	156.0	156.0	156.0	117.0				
15.0	180.0	180.0	180.0	180.0	180.0	180.0	180.0	135.0				
16.0	192.0	192.0	192.0	192.0	192.0	192.0	192.0	144.0				
20.0	240.0	240.0	240.0	240.0	240.0	240.0	240.0	180.0				
25.0	300.0	300.0	300.0	300.0	300.0	300.0	300.0	225.0				
32.0	384.0	384.0	384.0	384.0	384.0	384.0	384.0	288.0				
40.0	480.0	480.0	480.0	480.0	480.0	480.0	480.0	360.0				
50.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	450.0				
63.0	756.0	756.0	756.0	756.0	756.0	756.0	756.0	567.0				

Range of instantaneous tripping: 5.5 – 12 x I_{N}

Appendix B Standard and optional accessories for specific measuring functions

The table below lists recommended standard and optional accessories required for specific measurements. Please refer to chapter 3.5 for further information on standard and optional accessories.

Measuring function	Appropriate accessories (accessories with item no. are optional)	
Insulating resistance	 universal three-wire test cable "Commander" test probe (switchable by means of "TEST" key) 	
Low-impedance resistance Continuity test	 universal three-wire test cable "Commander" test probe (switchable by means of "TEST" key) 	
	40 m measuring line BENNING TA 5 (044039)	
Line impedance (voltage drop) Loop impedance	 universal three-wire test cable test cable with shock-proof plug "Commander" test plug for shock-proof socket 	
	 (switchable by means of "TEST" key) (044149) "Commander" test probe (switchable by means of "TEST" key) 	
RCD testing	 universal three-wire test cable test cable with shock-proof plug "Commander" test plug for shock-proof socket (switchable by means of "TEST" key) (044149) 	
Earthing resistance	 universal three-wire test cable earthing kit consisting of two earth rods, three test cables (044113) 	
Phase sequence (rotary field)	 universal three-wire test cable 16 A CEE measuring adapter, 5-pin, for voltage / rotary field measurement (044148) 	
Voltage, frequency	 universal three-wire test cable "Commander" test probe (switchable by means of "TEST" key) 	
	 test cable with shock-proof plug "Commander" test plug for shock-proof socket (switchable by means of "TEST" key) (044149) 	
Current	 AC current clamp adapter BENNING CC 1 for current measurement up to 400 A AC (044037) AC / DC current clamp adapter BENNING CC 3 	
	for current measurement up to 300 A AC / DC (044038)	
Luminous intensity	 Iuminous intensity sensor BENNING luxmeter type (044111) 	В
Single-fault leakage current (ISFL) in IT networks	 universal three-wire test cable test cable with shock-proof plug "Commander" test plug for shock-proof socket (switchable by means of "TEST" key) (044149) "Commander" test probe (switchable by means of "TEST" key) 	

Appendix C "Commander" test probe, "Commander" test plug

C.1 **A** Safety warnings

Measuring categories of the "Commanders"

"Commander" test probe (switchable by means of "TEST" key)

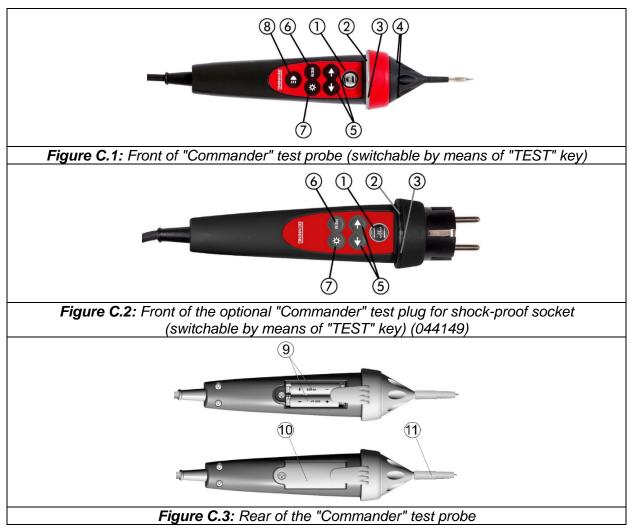
without attachable protective cap, 18 mm tip: CAT II 1000 V to earth with attachable protective cap, 4 mm tip: CAT II 1000 V / CAT III 600 V / CAT IV 300 V to earth

Optional accessories:

"Commander" test plug for shock-proof socket (switchable by means of "TEST" key) Item no.: 044149 CAT II 300 V to earth

- □ The measuring categories of the "Commanders" might be lower than the measuring category of the installation tester.
- If the phase voltage is detected at the protective conductor connection (PE), immediately stop all measurements and make sure that the fault will be eliminated.
- Before replacing the batteries / storage batteries or opening the battery compartment cover, disconnect the "Commander" both from the installation tester and from the installation.
- For repairs or service, please contact your specialty retailer or the BENNING Service Center.

C.2 Batteries


The "Commanders" can be operated with of two alkaline batteries or two rechargeable NiMh batteries (storage batteries) of size AAA. The usual operating time is approximately 40 hours and shall apply to a capacity of at least 850 mAh.

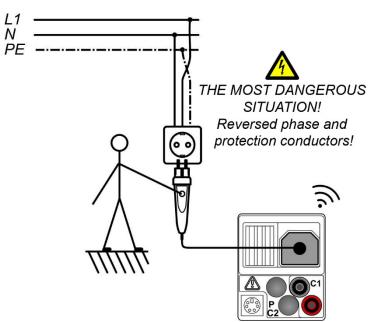
Notes:

- If the "Commanders" are not used for a longer period of time, remove all batteries / storage batteries from the battery compartment.
- Use alkaline batteries or rechargeable NiMh batteries of size AAA only! When using rechargeable storage batteries, it is recommended to observe a minimum capacity of 850 mAh.
- Please make sure that the batteries / storage batteries are inserted with correct polarity, because otherwise the "Commander" cannot be operated and the batteries / storage batteries will discharge.

C.3 Description of the "Commanders"

Caption:

1	TEST	Start of measurement
		PE contact electrode for protective conductor connection
2	LED	Left status RGB LED
3	LED	Right status RGB LED
4	LEDs	LEDs of the measuring point illumination
5	Function selector keys	Selection of the measuring function (only in the "AUTO" switch position)
6	MEM	Storage / recall of measuring results
7	LCD illumination	Switches on / off the LCD illumination of the installation tester
8	Measuring point illumination	Switches on / off the measuring point illumination
9	Batteries / storage batteries	Size AAA, alkaline batteries or NiMh storage batteries
10	Battery compartment cover	Battery compartment cover
11	Protective cap	Detachable protective cap, CAT IV 300 V


C.4 LED indications of the "Commanders"

Both LEDs yellow	Warning! Phase voltage at the PE connection of the "Commander"! Only indicated, if the silver "TEST" key of the "Commander" is touched for > 1 second!
Right LED red	Measuring result outside the preset limiting values
Right LED green	Measuring result inside the preset limiting values
Left LED is flashing blue	"Commander" is monitoring the input voltage
Left LED orange	Voltage between testing terminals is higher than 50 V
Both LEDs are flashing red	Battery voltage of the "Commander" is low
Both LEDs red and "Commander" switches off	Battery voltage too low to operate the "Commander"

How to test the protective conductor connection (PE)

- Select the Z_I (L-N/L) (English: Z_{LINE}), Z_S (L-PE) (English: Z_{LOOP}) or FI/RCD function by means of the function selector switch.
- □ Connect the optional "Commander" test plug (044149) to the test object (see figure C.4).
- Touch the silver contact electrode of the "TEST" key at the "Commander" for at least one second.
- □ If the phase voltage is detected at the PE connection of the "Commander", the LEDs of the

"Commander" will light yellow. In addition, the warning is shown on the LC display of the installation tester and the buzzer sounds. Further measurements must be stopped immediately!

Figure C.4: Reversed L and PE conductors – Phase voltage at the PE connection is detected by touching the "TEST" key of the optional "Commander" test plug (044149).